Publications by authors named "G A Engbretson"

Purpose: Amphibian retinas regenerate after injury, making them ideal for studying the mechanisms of retinal regeneration, but this leaves their value as models of retinal degeneration in question. The authors asked whether the initial cellular changes after rod loss in the regenerative model Xenopus laevis mimic those observed in nonregenerative models. They also asked whether rod loss was reversible.

View Article and Find Full Text PDF

Purpose: Accumulation of free opsin by mutations in rhodopsin or insufficiencies in the visual cycle can lead to retinal degeneration. Free opsin activates phototransduction; however, the link between constitutive activation and retinal degeneration is unclear. In this study, the photoresponses of Xenopus rods rendered constitutively active by vitamin A deprivation were examined.

View Article and Find Full Text PDF

The retina is among the most metabolically active tissues in the body, requiring a constant supply of blood glucose to sustain function. We assessed the impact of low blood glucose on the vision of C57BL/6J mice rendered hypoglycemic by a null mutation of the glucagon receptor gene, Gcgr. Metabolic stress from moderate hypoglycemia led to late-onset loss of retinal function in Gcgr(-/-) mice, loss of visual acuity, and eventual death of retinal cells.

View Article and Find Full Text PDF

The kinetics of activation and inactivation in the phototransduction pathway of developing Xenopus rods were studied. The gain of the activation steps in transduction (amplification) increased and photoresponses became more rapid as the rods matured from the larval to the adult stage. The time to peak was significantly shorter in adults (1.

View Article and Find Full Text PDF

Circadian clocks are integral components of visual systems. They help adjust an animal's vision to diurnal changes in ambient illumination. To understand how circadian clocks may adapt visual sensitivity, we investigated the spatial and temporal properties of optomotor responses of young Xenopus laevis tadpoles (Nieuwkoop and Faber, developmental stage 48) using a modified 2-alternative preferential-viewing method.

View Article and Find Full Text PDF