The composite fermion theory opened a new chapter in understanding many-body correlations through the formation of emergent particles. The formation of two-flux and four-flux composite fermions is well established. While there are limited data linked to the formation of six-flux composite fermions, topological protection associated with them is conspicuously lacking.
View Article and Find Full Text PDFIn spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. Recently such a competition was reported in the two-dimensional electron gas at filling factor ν = 5/2. At this filling factor a pressure-induced quantum phase transition was observed from the paired fractional quantum Hall state to the quantum Hall nematic.
View Article and Find Full Text PDFWe present a dc Superconducting QUantum Interference Device (SQUID)-based current amplifier with an estimated input referred noise of only 2.3 fA/Hz. Because of such a low amplifier noise, the circuit is useful for Johnson noise thermometry of quantum resistors in the kΩ range down to mK temperatures.
View Article and Find Full Text PDFIn breast cancer the human epidermal growth factor receptor 2 (HER2) is an important target for a number of different HER2 inhibitors. Different slide-based assays are available for assessment of treatment eligibility, which include fluorescence in situ hybridization (FISH) or other in situ hybridization (ISH) methods for assessment of the HER2 gene status. Here we report a summary of the validation data on HER2 IQFISH pharmDx™ (Dako Omnis), a newly developed assay for the automated staining platform Dako Omnis.
View Article and Find Full Text PDFThe human epidermal growth factor receptor 2 (HER2) is an important target for treatment of gastroesophageal cancer. Different slide-based assays are available for assessment of HER2 status. Overexpression of the HER2 protein is assessed by immunohistochemistry (IHC) whereas amplification of the HER2 gene is assessed by fluorescence in situ hybridization (FISH) or other in situ hybridization (ISH) methods.
View Article and Find Full Text PDF