Publications by authors named "G A Cirrone"

Recent investigations into radiation-induced side effects have focused on understanding the physiopathological consequences of irradiation on late-responding tissues like the spinal cord, which can lead to chronic progressive myelopathy. Proton therapy, an advanced radiation treatment, aims to minimize damage to healthy tissues through precise dose deposition. However, challenges remain, particularly regarding the variation in dose distribution, characterized by maximum deposition at the end of the proton range, known as the distal fall-off of a spread-out Bragg peak.

View Article and Find Full Text PDF

This paper presents a comprehensive study of hydrogenated amorphous silicon (a-Si)-based detectors, utilizing electrical characterization, Raman spectroscopy, photoemission, and inverse photoemission techniques. The unique properties of a-Si have sparked interest in its application for radiation detection in both physics and medicine. Although amorphous silicon (a-Si) is inherently a highly defective material, hydrogenation significantly reduces defect density, enabling its use in radiation detector devices.

View Article and Find Full Text PDF

Purpose: Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET).

Materials And Methods: The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.

View Article and Find Full Text PDF

Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).

View Article and Find Full Text PDF
Article Synopsis
  • * This module has been enhanced over time to boost performance and allow for more detailed simulations in bulk solutions, contributing to understanding early DNA damage and comparing with real experimental data.
  • * The latest advancements and various applications of this module are discussed in the context of the ESA BioRad III Project, showcasing its utility in modeling chemical processes.
View Article and Find Full Text PDF