Initiation of chromosome replication is an essential stage of the bacterial cell cycle that is controlled by the DnaA protein. With the aim of developing novel antimicrobials, we have targeted the initiation of DNA replication, using antisense peptide nucleic acids (PNAs), directed against DnaA translation. A series of anti-DnaA PNA conjugated to lysine-rich bacterial penetrating peptides (PNA-BPPs) were designed to block DnaA translation.
View Article and Find Full Text PDFBackground: Carbapenemase-producing Klebsiella pneumoniae and Escherichia coli have become a significant global health challenge. This has created an urgent need for new treatment modalities. We evaluated the efficacy of mecillinam in combination with either avibactam or ceftazidime/avibactam against carbapenemase-producing clinical isolates.
View Article and Find Full Text PDFCell-penetrating peptides (CPPs) are increasingly used for cellular drug delivery in both pro- and eukaryotic cells, and oligoarginines have attracted special attention. How arginine-rich CPPs translocate across the cell envelope, particularly for prokaryotes, is still unknown. Arginine-rich CPPs efficiently deliver antimicrobial peptide nucleic acid (PNA) to its intracellular mRNA target in bacteria.
View Article and Find Full Text PDFBackground: Antisense peptide nucleic acids (PNAs) constitute an alternative to traditional antibiotics, by their ability to silence essential genes.
Objectives: To evaluate the antibacterial effects of antisense PNA-peptide conjugates that target the gene encoding the alpha subunit (NrdA) of the Escherichia coli ribonucleotide reductase (RNR).
Methods: Bacterial susceptibility of a series of NrdA-targeting PNAs was studied by MIC determination and time-kill analysis.
Most organisms possess several cell cycle checkpoints to preserve genome stability in periods of stress. Upon starvation, the absence of chromosomal duplication in the bacterium Escherichia coli is ensured by holding off commencement of replication. During normal growth, accumulation of the initiator protein DnaA along with cell cycle changes in its activity, ensure that DNA replication starts only once per cell cycle.
View Article and Find Full Text PDF