Publications by authors named "G A Botton"

The conversion of CO into liquid fuels, using only sunlight and water, offers a promising path to carbon neutrality. An outstanding challenge is to achieve high efficiency and product selectivity. Here, we introduce a wireless photocatalytic architecture for conversion of CO and water into methanol and oxygen.

View Article and Find Full Text PDF

Plasmonic nanomaterials such as Au, Ag, and Cu are widely recognized for their strong light-matter interactions, making them promising photothermal materials for solar steam generation. However, their practical use in water evaporation is significantly limited by the trade-off between high costs and poor stability. In this regard, we introduce a novel, nonmetallic dual plasmonic TiN/MoO composite.

View Article and Find Full Text PDF

The sensitivity and the precision of the Geometric Phase Analysis (GPA) method for strain characterization is a topic widely discussed in the literature and is usually difficult to quantify. Indeed, the GPA precision is intricately linked to the resolution of the strain maps defined when masking the periodic reflections in Fourier space. In this study an additional parameter, sampling, is proposed to be analyzed regarding the precision of GPA by developing the concept of a phase noise in the GPA equations.

View Article and Find Full Text PDF

Plasmonic polymeric nanoassemblies offer valuable opportunities in photoconversion applications. Localized surface plasmon mechanisms behind such nanoassemblies govern their functionalities under light illumination. However, an in-depth investigation at the single nanoparticle (NP) level is still challenging, especially when the buried interface is involved, due to the availability of suitable techniques.

View Article and Find Full Text PDF

In this work, we investigate the effects of bends on the surface plasmon resonances in nanowires (NWs) and isolated edges of planar structures using electron energy loss spectroscopy experiments and theoretical calculations. Previous work showed that the sharp bends in NWs do not affect their resonant modes. Here, we study previously overlooked effects and analyze systematically the evolution of resonant modes for several bending angles from 30° to 180°, showing that bending can have a significant effect on the plasmonic response of a nanostructure.

View Article and Find Full Text PDF