Publications by authors named "Fytas N"

We investigate the dynamical critical behavior of the two-dimensional three-state Potts model with single spin-flip dynamics in equilibrium. We focus on the mean-squared deviation of the magnetization M (MSD_{M}) as a function of time, as well as on the autocorrelation function of M. Our simulations reveal the existence of two crossover behaviors at times τ_{1}∼L^{z_{1}} and τ_{2}∼L^{z_{2}}, separating three dynamical regimes.

View Article and Find Full Text PDF

We study the percolation properties of geometrical clusters defined in the overlap space of two statistically independent replicas of a square-lattice Ising model that are simulated at the same temperature. In particular, we consider two distinct types of clusters in the overlap, which we dub soft- and hard-constraint clusters, and which are subsets of the regions of constant spin overlap. By means of Monte Carlo simulations and a finite-size scaling analysis we estimate the transition temperature as well as the set of critical exponents characterizing the percolation transitions undergone by these two cluster types.

View Article and Find Full Text PDF

Finite-size scaling above the upper critical dimension is a long-standing puzzle in the field of statistical physics. Even for pure systems various scaling theories have been suggested, partially corroborated by numerical simulations. In the present manuscript we address this problem in the even more complicated case of disordered systems.

View Article and Find Full Text PDF

We investigate the dynamical critical behavior of the two- and three-dimensional Ising models with Glauber dynamics in equilibrium. In contrast to the usual standing, we focus on the mean-squared deviation of the magnetization M, MSD_{M}, as a function of time, as well as on the autocorrelation function of M. These two functions are distinct but closely related.

View Article and Find Full Text PDF

We investigate the critical behavior of the two-dimensional spin-1 Baxter-Wu model in the presence of a crystal-field coupling Δ with the goal of determining the universality class of transitions along the second-order part of the transition line as one approaches the putative location of the multicritical point. We employ extensive Monte Carlo simulations using two different methodologies: (i) a study of the zeros of the energy probability distribution, closely related to the Fisher zeros of the partition function, and (ii) the well-established multicanonical approach employed to study the probability distribution of the crystal-field energy. A detailed finite-size scaling analysis in the regime of second-order phase transitions in the (Δ,T) phase diagram supports previous claims that the transition belongs to the universality class of the four-state Potts model.

View Article and Find Full Text PDF

In the present paper, we investigate the effects of disorder on the reversal time (τ) of classical anisotropic Heisenberg ferromagnets in three dimensions by means of Monte Carlo simulations. Starting from the pure system, our analysis suggests that τ increases with increasing anisotropy strength. On the other hand, for the case of randomly distributed anisotropy, generated from various statistical distributions, a set of results is obtained: (i) For both bimodal and uniform distributions, the variation of τ with the strength of anisotropy strongly depends on temperature.

View Article and Find Full Text PDF

We study the question of universality in the two-dimensional spin-1 Baxter-Wu model in the presence of a crystal field Δ. We employ extensive numerical simulations of two types, providing us with complementary results: Wang-Landau sampling at fixed values of Δ and a parallelized variant of the multicanonical approach performed at constant temperature T. A detailed finite-size scaling analysis in the regime of second-order phase transitions in the (Δ,T) phase diagram indicates that the transition belongs to the universality class of the four-state Potts model.

View Article and Find Full Text PDF

We investigate by means of Monte Carlo simulations the dynamic phase transition of the two-dimensional kinetic Blume-Capel model under a periodically oscillating magnetic field in the presence of a quenched random crystal-field coupling. We analyze the universality principles of this dynamic transition for various values of the crystal-field coupling at the originally second-order regime of the corresponding equilibrium phase diagram of the model. A detailed finite-size scaling analysis indicates that the observed nonequilibrium phase transition belongs to the universality class of the equilibrium Ising ferromagnet with additional logarithmic corrections in the scaling behavior of the heat capacity.

View Article and Find Full Text PDF

We present an extensive Monte Carlo investigation of the metastable lifetime through the reversal of the magnetization of spin-s Ising and Blume-Capel models, where s={1/2,1,3/2,2,5/2,3,7/2}. The mean metastable lifetime (or reversal time) is studied as a function of the applied magnetic field, and for both models it is found to obey the Becker-Döring theory, as was initially developed for the case of an s=1/2 Ising ferromagnet within the classical nucleation theory. Moreover, the decay of the metastable volume fraction nicely follows Avrami's law for all values of s and for both models considered.

View Article and Find Full Text PDF

Using high-precision Monte Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques, we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on a square lattice. We mainly focus on the part of the phase diagram where the pure model undergoes a continuous transition, known to fall into the universality class of a pure Ising ferromagnet. A dedicated scaling analysis reveals concrete evidence in favor of the strong universality hypothesis with the presence of additional logarithmic corrections in the scaling of the specific heat.

View Article and Find Full Text PDF

Polymer-grafted nanoparticles (PGNPs) can provide property profiles that cannot be obtained individually by polymers or nanoparticles (NPs). Here, we have studied the mixing-demixing transition of symmetric copolymer melts of polymer-grafted spherical nanoparticles by means of coarse-grained molecular dynamics simulation and a theoretical mean-field model. We find that a larger size of NPs leads to higher stability for a given number of grafted chains and chain lengths, reaching a point where demixing is not possible.

View Article and Find Full Text PDF

We provide a nontrivial test of supersymmetry in the random-field Ising model at five spatial dimensions, by means of extensive zero-temperature numerical simulations. Indeed, supersymmetry relates correlation functions in a D-dimensional disordered system with some other correlation functions in a D-2 clean system. We first show how to check these relationships in a finite-size scaling calculation and then perform a high-accuracy test.

View Article and Find Full Text PDF

We investigate the scaling of the interfacial adsorption of the two-dimensional Blume-Capel model using Monte Carlo simulations. In particular, we study the finite-size scaling behavior of the interfacial adsorption of the pure model at both its first- and second-order transition regimes, as well as at the vicinity of the tricritical point. Our analysis benefits from the currently existing quite accurate estimates of the relevant (tri)critical-point locations.

View Article and Find Full Text PDF

We present an extensive study of the effects of quenched disorder on the dynamic phase transitions of kinetic spin models in two dimensions. We undertake a numerical experiment performing Monte Carlo simulations of the square-lattice random-bond Ising and Blume-Capel models under a periodically oscillating magnetic field. For the case of the Blume-Capel model we analyze the universality principles of the dynamic disordered-induced continuous transition at the low-temperature regime of the phase diagram.

View Article and Find Full Text PDF

Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder.

View Article and Find Full Text PDF

We employ numerical simulations and finite-size scaling techniques to investigate the properties of the dynamic phase transition that is encountered in the Blume-Capel model subjected to a periodically oscillating magnetic field. We mainly focus on the study of the two-dimensional system for various values of the crystal-field coupling in the second-order transition regime. Our results indicate that the present nonequilibrium phase transition belongs to the universality class of the equilibrium Ising model and allow us to construct a dynamic phase diagram, in analogy with the equilibrium case, at least for the range of parameters considered.

View Article and Find Full Text PDF

The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e.

View Article and Find Full Text PDF

We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice q-states Potts model. We consider the pure and random-bond versions of the Potts model for q=3,4,5,8, and 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions.

View Article and Find Full Text PDF

By performing a high-statistics simulation of the D=4 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute to a high accuracy the complete set of critical exponents for this class, including the correction-to-scaling exponent. Our results indicate that in four dimensions (i) dimensional reduction as predicted by the perturbative renormalization group does not hold and (ii) three independent critical exponents are needed to describe the transition.

View Article and Find Full Text PDF

We study the thermodynamic properties of the three-dimensional Blume-Capel model on the simple cubic lattice by means of computer simulations. In particular, we implement a parallelized variant of the multicanonical approach and perform simulations by keeping a constant temperature and crossing the phase boundary along the crystal-field axis. We obtain numerical data for several temperatures in both the first- and second-order regime of the model.

View Article and Find Full Text PDF

We analyze the fragmentation behavior of random clusters on the lattice under a process where bonds between neighboring sites are successively broken. Modeling such structures by configurations of a generalized Potts or random-cluster model allows us to discuss a wide range of systems with fractal properties including trees as well as dense clusters. We present exact results for the densities of fragmenting edges and the distribution of fragment sizes for critical clusters in two dimensions.

View Article and Find Full Text PDF

We investigate the dependence of the critical Binder cumulant of the magnetization and the largest Fortuin-Kasteleyn cluster on the boundary conditions and aspect ratio of the underlying square Ising lattices. By means of the Swendsen-Wang algorithm, we generate numerical data for large system sizes and we perform a detailed finite-size scaling analysis for several values of the aspect ratio r, for both periodic and free boundary conditions. We estimate the universal probability density functions of the largest Fortuin-Kasteleyn cluster and we compare it to those of the magnetization at criticality.

View Article and Find Full Text PDF

We solve a long-standing puzzle in statistical mechanics of disordered systems. By performing a high-statistics simulation of the D=3 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute the complete set of critical exponents for this class, including the correction-to-scaling exponent, and we show, to high numerical accuracy, that scaling is described by two independent exponents.

View Article and Find Full Text PDF

Conformations of a single-component bottle-brush polymer with a fully flexible backbone under poor solvent conditions are studied by molecular dynamics simulations, using a coarse-grained bead-spring model with side chains of up to N = 40 effective monomers. By variation of the solvent quality and the grafting density σ with which side chains are grafted onto the flexible backbone, we study for backbone lengths of up to Nb = 100 the crossover from the brush/coil regime to the dense collapsed state. At lower temperatures, where collapsed chains with a constant monomer density are observed, the choice of the above parameters does not play any role and it is the total number of monomers that defines the dimensions of the chains.

View Article and Find Full Text PDF