Liquid-liquid phase separation (LLPS) in macromolecular solutions (e.g., coacervation) is relevant both to technology and to the process of mesoscale structure formation in cells.
View Article and Find Full Text PDFThe reflectin proteins have been extensively studied for their role in reflectance in cephalopods. In the recently evolved Loliginid squids, these proteins and the structural color they regulate are dynamically tunable, enhancing their effectiveness for camouflage and communication. In these species, the reflectins are found in highest concentrations within the structurally tunable, membrane enclosed, periodically stacked lamellae of subcellular Bragg reflectors and in the intracellular vesicles of specialized skin cells known as iridocytes and leuocophores, respectively.
View Article and Find Full Text PDFBending of double-stranded DNA (dsDNA) has important applications in biology and engineering, but measurement of DNA bend angles is notoriously difficult and rarely dynamic. Here we introduce a nanoscale instrument that makes dynamic measurement of the bend in short dsDNAs easy enough to be routine. The instrument works by embedding the ends of a dsDNA in stiff, fluorescently labeled DNA nanotubes, thereby mechanically magnifying their orientations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
The classic picture of soft material mechanics is that of rubber elasticity, in which material modulus is related to the entropic elasticity of flexible polymeric linkers. The rubber model, however, largely ignores the role of valence (i.e.
View Article and Find Full Text PDFLiquid-liquid phase separation of a polymer-rich phase from a polymer-dilute solution, known generally as coacervation, has been observed in a variety of biomolecular systems. Understanding of this process, and the properties of the resulting liquid, has been hampered in typical systems by the complexity of the components and of the intermolecular interactions. Here, we examine a single-component system comprised entirely of DNA, in which tetravalent DNA nanostar particles condense into liquids through attractive bonds formed from basepairing interactions.
View Article and Find Full Text PDFNeurotransmitters are small molecules that orchestrate complex patterns of brain activity. Unfortunately, there exist few sensors capable of directly detecting individual neurotransmitters. Those sensors that do exist are either unspecific or fail to capture the temporal or spatial dynamics of neurotransmitter release.
View Article and Find Full Text PDFWe demonstrate a versatile process for assembling micron-scale filament architectures by controlling where DNA tile nanotubes nucleate on DNA origami assemblies. "Nunchucks," potential mechanical magnifiers of nanoscale dynamics consisting of two nanotubes connected by a dsDNA linker, form at yields sufficient for application and consistent with models.
View Article and Find Full Text PDFDNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the presence of Ag(+) ions.
View Article and Find Full Text PDFRod-like particles form solutions of technological and biological importance. In particular, biofilaments such as actin and microtubules are known to form a variety of phases, both in vivo and in vitro, whose appearance can be controlled by depletion, confinement, and electrostatic interactions. Here, we utilize DNA nanotubes to undertake a comprehensive study of the effects of those interactions on two particular rod-like phases: a 2D nematic phase consisting of aligned rods pressed against a glass surface, and a 3D bundled network phase.
View Article and Find Full Text PDFIt is well-known that even small perturbations of the DNA sequence can drastically and unpredictably disrupt or alter the fluorescence of DNA-stabilized silver nanoclusters (DNA-AgNCs). Understanding how the structure of DNA affects the nanocluster that it stabilizes is the key to rationalizing such effects. We approach this challenge by strategically modifying the stem sequence of a hairpin DNA that hosts a spectrally pure, red-emitting nanocluster.
View Article and Find Full Text PDFHeparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa).
View Article and Find Full Text PDFDNA-stabilized fluorescent silver nanoclusters (AgNC DNA) are a new class of fluorophore that are formed by sequence specific interactions between silver and single-stranded DNA. By incorporating both target-binding and fluorescent-reporting sequences into a single synthetic DNA oligomer, AgNC DNA probes eliminate the need to conjugate dye or quencher molecules. In this study, we modify a AgNC DNA probe to demonstrate single-color multiplexed detection of DNA targets.
View Article and Find Full Text PDFWe measure the stiffness of tiled DNA nanotubes (HX-tubes) as a function of their (defined) circumference by analyzing their micrometer-scale thermal deformations using fluorescence microscopy. We derive a model that relates nanoscale features of HX-tube architecture to the measured persistence lengths. Given the known stiffness of double-stranded DNA, we use this model to constrain the average spacing between and effective stiffness of individual DNA duplexes in the tube.
View Article and Find Full Text PDFInfluenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza.
View Article and Find Full Text PDFCells are capable of a variety of dramatic stimuli-responsive mechanical behaviors. These capabilities are enabled by the pervading cytoskeletal network, an active gel composed of structural filaments (e.g.
View Article and Find Full Text PDFWe show that DNA hairpins template the site-specific assembly of fluorescent few-atom Ag clusters on DNA nanotubes. Fluorescent clusters form only at hairpin sites and not on the double-stranded DNA scaffold, allowing for spatially programmed self-assembly. Ag clusters synthesized on hairpins protruding from DNA nanotubes can have nearly identical fluorescence spectra to those synthesized on free hairpins of identical sequence.
View Article and Find Full Text PDFAmong the key goals of structural DNA nanotechnology are to build highly ordered structures self-assembled from individual DNA motifs in 1D, 2D, and finally 3D. All three of these goals have been achieved with a variety of motifs. Here, we report the design and characterization of 1D nanotubes and 2D arrays assembled from three novel DNA motifs, the 6-helix bundle (6HB), the 6-helix bundle flanked by two helices in the same plane (6HB+2), and the 6-helix bundle flanked by three helices in a trigonal arrangement (6HB+3).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2012
Control of cell proliferation is a fundamental aspect of tissue physiology central to morphogenesis, wound healing, and cancer. Although many of the molecular genetic factors are now known, the system level regulation of growth is still poorly understood. A simple form of inhibition of cell proliferation is encountered in vitro in normally differentiating epithelial cell cultures and is known as "contact inhibition.
View Article and Find Full Text PDFSilver-DNA nanoclusters (Ag:DNAs) are novel fluorophores under active research and development as alternative biomolecular markers. Comprised of a few-atom Ag cluster that is stabilized in water by binding to a strand of DNA, they are also interesting for fundamental explorations into the properties of metal molecules. Here, we use in situ calibrated electrokinetic microfluidics and fluorescence correlation spectroscopy to determine the size, charge, and conformation of a select set of Ag:DNAs.
View Article and Find Full Text PDFSupported lipid bilayers (SLB) are important for the study of membrane-based phenomena and as coatings for biosensors. Nevertheless, there is a fundamental lack of understanding of the process by which they form from vesicles in solution. We report insights into the mechanism of SLB formation by vesicle adsorption using temperature-controlled time-resolved fluorescence microscopy at low vesicle concentrations.
View Article and Find Full Text PDFWe have investigated the formation of phospholipid bilayers of the neutral (zwitterionic) lipid dimyristoyl-phosphatidylcholine (DMPC) on various glass surfaces from vesicles in various aqueous solutions and temperatures using a number of complementary techniques: the surface forces apparatus (SFA), quartz crystal microbalance (QCM), fluorescence recovery after photobleaching (FRAP), fluorescence microscopy, and streaming potential (SP) measurements. The process involves five stages: vesicle adhesion to the substrate surfaces via electrostatic and van der Waals forces, steric interactions with neighboring vesicles, rupture, spreading via hydrophobic fusion of bilayer edges, and ejection of excess lipid, trapped water, and ions into the solution. The forces between DMPC bilayers and silica were measured in the SFA in phosphate buffered saline (PBS), and the adhesion energy was found to be 0.
View Article and Find Full Text PDFArch Biochem Biophys
October 2008
Tau, a family of microtubule-associated proteins (MAPs), stabilizes microtubules (MTs) and regulates their dynamics. Tau isoforms regulate MT dynamic instability differently: 3-repeat tau is less effective than 4-repeat tau at suppressing the disassembly of MTs. Here, we report another tau-isoform-dependent phenomenon, revealed by fluorescence recovery after photobleaching measurements on a BODIPY-conjugated taxol bound to MTs.
View Article and Find Full Text PDFAim: To assess and compare the changes in shape of encapsulated biconvex structures undergoing equatorial traction with those changes reported in the human lens during accommodation.
Methods: Equatorial traction was applied to several different biconvex structures: air, water, and gel filled mylar and rubber balloons and spherical vesicles. In the vesicles, traction was applied externally, using optical tweezers, or from within, by the assembly of encapsulated microtubules.
DNA nanotubes are crystalline self-assemblies of DNA tiles approximately 10 nm in diameter that readily grow tens of micrometers in length. Easy assembly, programmability, and stiffness make them interesting for many applications, but DNA nanotubes begin to melt at temperatures below 40 degrees C, break open when deposited on mica or scanned by AFM, and disintegrate in deionized water. These weaknesses can be traced to the presence of discontinuities in the phosphate backbone, called nicks.
View Article and Find Full Text PDF