Publications by authors named "Fuzhen Zhao"

Background: Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder accompanied by ovulatory dysfunction. Insulin resistance (IR) is a key pathogenic mechanism in PCOS, and insulin sensitizers, such as metformin and pioglitazone, can improve PCOS symptoms. Chiglitazar, a pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist, is also an insulin sensitizer; however, its therapeutic effects have not yet been studied in PCOS.

View Article and Find Full Text PDF

Background: Elevated hepatic glucose production (HGP) is a prominent manifestation of impaired hepatic glucose metabolism in individuals with diabetes. Increased hepatic gluconeogenesis plays a pivotal role in the dysregulation of hepatic glucose metabolism and contributes significantly to fasting hyperglycemia in diabetes. Previous studies have identified zinc-finger BED domain-containing 3 (ZBED3) as a risk gene for type 2 diabetes (T2DM), and its single nucleotide polymorphism (SNPs) is closely associated with the fasting blood glucose level, suggesting a potential correlation between ZBED3 and the onset of diabetes.

View Article and Find Full Text PDF

Herein, carbon-coated MoSe decorated MoCT MXene heterostructures (MoSe/MoCT@C) have been fabricated. MoCT works as a dual-function electron/ion conductor, which not only provides high conductivity and mechanical strength, but also prevents the severe self-aggregation of few layered MoSe nanosheets. The high reversible capacities of 405 mA h g at 100 mA g after 150 cycles and 258 mA h g at 2000 mA g after 400 cycles could be achieved for a potassium-ion battery.

View Article and Find Full Text PDF

Cr O was applied to study the modification of In O based catalysts for CO hydrogenation to methanol reaction. Combined with X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), etc., the structure of the catalysts was characterized.

View Article and Find Full Text PDF

In order to increase the hardness, wear resistance and corrosion resistance of nickel-based coatings, pure nickel is often co-electrodeposited with silicon carbide (SiC) particles. However, SiC particles tend to agglomerate and precipitate in the bath, which reduces the amounts of nanoparticles and causes nonuniformity. Herein, we solve these problems by using binary non-ionic surfactants (Span 80 and Tween 60) to effectively disperse SiC particles (binary-SiC) in the bath, which suppresses nanoparticles agglomeration and leads to uniformly distributed SiC particles in the composite coatings.

View Article and Find Full Text PDF

Materials with a high specific surface area including a porous structure have been widely researched due to the applicability in the adsorption of various organic dyes. However, further application of porous materials is limited by the complicated and expensive preparation process. Herein, a Sn-Ni coating with a polyporous structure is successfully prepared via a simple and high-efficiency electrodeposition approach in deep eutectic solvents (DESs).

View Article and Find Full Text PDF

We study the roles of graphene acting as a buffer layer for growth of an AlN film on a sapphire substrate. Graphene can reduce the density of AlN nuclei but increase the growth rate for an individual nucleus at the initial growth stage. This can lead to the reduction of threading dislocations evolved at the coalescence boundaries.

View Article and Find Full Text PDF

Background: MDS1 and EVI1 complex locus protein EVI1 (MECOM) is an oncogenic transcription factor in several kinds of cancers. However, the clinical significance of MECOM in glioblastoma multiforme (GBM) has not been well elucidated.

Patients And Methods: Our study enrolled 86 resected samples of GBM in three medical centers.

View Article and Find Full Text PDF

A series of Pd/SBA-15/Al2O3/FeCrAl and Pd/5 wt% Ce(1-x)Zr(x)O2/SBA-15/Al2O3/FeCrAl (x = 0-1) metal monolithic catalysts were prepared and characterized by various techniques. The catalytic activity and the stability of the catalysts for methane combustion were evaluated. All the catalysts retain the SBA-15 mesoporous structure, with PdO being confined in its channels.

View Article and Find Full Text PDF