High-altitude regions offer outstanding opportunities for investigating the impacts of combined abiotic stresses on plant physiological processes given their significant differences in terms of the ecological environment in high-elevation areas, low anthropogenic disturbance, and obvious distribution characteristics of plants along altitudinal gradients. Therefore, plants in high-altitude areas can be used as good targets for exploring plant adaptations to abiotic stress under extreme conditions. Plants that thrive in high-altitude environments such as the Qinghai-Tibet Plateau endure extreme abiotic stresses, including low temperatures, high UV radiation, and nutrient-poor soils.
View Article and Find Full Text PDFHigh-altitude plants face extreme environments such as low temperature, low oxygen, low nutrient levels, and strong ultraviolet radiation, causing them to adopt complex adaptation mechanisms. Phenotypic variation is the core manifestation of ecological adaptation and evolution. Many plants have developed a series of adaptive strategies through long-term natural selection and evolution, enabling them to survive and reproduce under such harsh conditions.
View Article and Find Full Text PDFPremise: Although previous studies have reported a positive correlation between leaf dry mass per unit area (LMA) and mean leaf thickness (LT), the LMA versus LT scaling relationship has not been determined due to limited sample sizes, despite its importance in estimating leaf bulk tissue density (mass per unit volume).
Methods: This issue was addressed using between 174 and 185 leaves from each of nine phylogenetically diverse species to investigate the LMA vs. LT scaling relationship.
Skewness, a measure of the asymmetry of a distribution, is frequently employed to reflect a biologically important property. Another statistic, the Gini coefficient (GC), originally used to measure economic inequality, has been validated in measuring the inequality of biological size distributions. Given that the GC and skewness control overlapping domains and interact with each other, researchers are perplexed by their relationship (varying with the biological [organ, tissue or cell] size distributions) and use both of them together to provide a more complete picture of the data.
View Article and Find Full Text PDFBackground: Calcium-dependent protein kinases (CDPKs) phosphorylate downstream target proteins in response to signals transmitted by free calcium ions (Ca, one of the second messengers) and thus play important regulatory roles in many biological processes, such as plant growth, development, and stress response.
Results: A bioinformatic analysis, as well as thorough evolutionary and expression investigations, were conducted to confirm previous reports of functional evidence for plant CDPKs. Using the Phytozome database's BLAST search engine and the HMM search tool in TBtools software, we discovered that CDPKs are well conserved from green algae to flowering angiosperms in various gene family sizes.
Plants frequently evade extreme environmental stress by initiating early flowering, yet the underlying mechanisms remain incompletely understood. Here, through extensive mutant screening, we identify a vegetative growth to reproductive growth transition factor (vrf1) mutant, which exhibits a deficiency in drought escape. Alternative splicing of VRF1 generates four isoforms, of which two encode functional proteins, VRF1-AS1 and VRF1-AS3.
View Article and Find Full Text PDFAgarwood, derived from the genus, is widely utilized in perfumery, traditional medicine, and cultural practices throughout Asia. Agarwood is rich in terpenes, especially sesquiterpenes, which are considered to be the source of its rare and exquisite fragrance. This Review consolidates recent research on sesquiterpene biosynthesis in agarwood and the influence of fungi on these processes, alongside a discussion of the potential medicinal value of agarwood sesquiterpenes.
View Article and Find Full Text PDFAquilaria sinensis is a significant resin-producing plant worldwide that is crucial for agarwood production. Agarwood has different qualities depending on the method with which it is formed, and the microbial community structures that are present during these methods are also diverse. Furthermore, the microbial communities of plants play crucial roles in determining their health and productivity.
View Article and Find Full Text PDFCurr Issues Mol Biol
March 2024
There has been debate about whether individuals with different color phenotypes should have different taxonomic status. In order to determine whether the different color phenotypes of require separate taxonomic status or are simply synonyms, here, the complete mitochondrial genomes (mitogenomes) of two different colored , i.e.
View Article and Find Full Text PDFThis study presents the complete mitochondrial genome (mitogenome) of , which is the first mitogenome of the genus . The mitogenome is a circular molecule with a length of 15,081 bp. The proportion of adenine and thymine (A + T) was 69.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2023
Water-saving irrigation techniques play a crucial role in addressing water scarcity challenges and promoting sustainable agriculture. However, the selection of appropriate water-saving irrigation methods remains a challenge in agricultural production. Additionally, the molecular regulatory mechanisms of crops under water-saving irrigation are not yet clear.
View Article and Find Full Text PDFHormesis is important in plant performance in contaminated environments, but the underlying genetic mechanisms are poorly understood. This study aimed at mining key genes in regulating Cd-induced hormesis in Arabidopsis thaliana and verifying their biological function. Hormesis of fresh weight, dry weight, and root length occurred at concentrations of 0.
View Article and Find Full Text PDFProteogenomics (PG) integrates the proteome with the genome and transcriptome to refine gene models and annotation. Coupled with single-cell (SC) assays, PG effectively distinguishes heterogeneity among cell groups. Affiliating spatial information to PG reveals the high-resolution circuitry within SC atlases.
View Article and Find Full Text PDFAlternative splicing refers to the process of producing different splicing isoforms from the same pre-mRNA through different alternative splicing events, which almost participates in all stages of plant growth and development. In order to understand its role in the fruit development of , transcriptome sequencing and alternative splicing analysis was carried out on three stages of fruit ( "Zi Yingui"). The results showed that the proportion of skipping exon events was the highest in all three periods, followed by a retained intron, and the proportion of mutually exclusive exon events was the lowest and most of the alternative splicing events occurred in the first two periods.
View Article and Find Full Text PDFAlternative splicing (AS) regulates gene expression and increases proteomic diversity for the fine tuning of stress responses in plants, but the exact mechanism through which AS functions in plant stress responses is not thoroughly understood. Here, we investigated how AS functions in poplar (), a popular plant for bioremediation, in response to lead (Pb) stress. Using a proteogenomic analysis, we determine that Pb stress induced alterations in AS patterns that are characterized by an increased use of nonconventional splice sites and a higher abundance of Pb-responsive splicing factors (SFs) associated with Pb-responsive transcription factors.
View Article and Find Full Text PDFAlkaloids are a class of nitrogen-containing alkaline organic compounds found in nature, with significant biological activity, and are also important active ingredients in Chinese herbal medicine. Amaryllidaceae plants are rich in alkaloids, among which galanthamine, lycorine, and lycoramine are representative. Since the difficulty and high cost of synthesizing alkaloids have been the major obstacles in industrial production, particularly the molecular mechanism underlying alkaloid biosynthesis is largely unknown.
View Article and Find Full Text PDF(scientific name: (Thunb.) Lour.) is a species of the genus in the family Oleaceae, and it has a long history of cultivation in China.
View Article and Find Full Text PDFPlant metabolism, including primary metabolism such as tricarboxylic acid cycle, glycolysis, shikimate and amino acid pathways as well as specialized metabolism such as biosynthesis of phenolics, alkaloids and saponins, contributes to plant survival, growth, development and interactions with the environment. To this end, these metabolic processes are tightly and finely regulated transcriptionally, post-transcriptionally, translationally and post-translationally in response to different growth and developmental stages as well as the constantly changing environment. In this review, we summarize and describe the current knowledge of the regulation of plant metabolism by alternative splicing, a post-transcriptional regulatory mechanism that generates multiple protein isoforms from a single gene by using alternative splice sites during splicing.
View Article and Find Full Text PDFAlternative splicing (AS) exists in eukaryotes to increase the complexity and adaptability of systems under biophysiological conditions by increasing transcriptional and protein diversity. As a classic hormone, abscisic acid (ABA) can effectively control plant growth, improve stress resistance, and promote dormancy. At the transcriptional level, ABA helps plants respond to the outside world by regulating transcription factors through signal transduction pathways to regulate gene expression.
View Article and Find Full Text PDFSWATH-MS proteomic approaches enable the identification and quantification of thousands of proteins within a single profiling experiment, which is useful for the identification of genes regulated by abscisic acid (ABA) in a high-throughput manner. Here we describe the experimental procedures for protein extraction, digestion, peptides desalting, followed by the establishment of a DDA spectrum database and DIA-based SWATH detection and protein quantification. This method is able to identify and quantify proteins involved in ABA metabolism, signal perception and transduction with high accuracy and reproducibility.
View Article and Find Full Text PDFLignin is a complex phenylpropanoid polymer deposited in the secondary cell walls of vascular plants. Unlike most gymnosperm and eudicot lignins that are generated via the polymerization of monolignols, grass lignins additionally incorporate the flavonoid tricin as a natural lignin monomer. The biosynthesis and functions of tricin-integrated lignin (tricin-lignin) in grass cell walls and its effects on the utility of grass biomass remain largely unknown.
View Article and Find Full Text PDF