Publications by authors named "Fuyuan Xiao"

The high concentration of chloride ions in desulphurization wastewater is the primary limiting factor for its reusability. Monovalent anion selective electrodialysis (S-ED) enables the selective removal of chloride ions, thereby facilitating the reuse of desulfurization wastewater. In this study, different concentrations of NaCl and NaSO were used to simulate different softened desulfurization wastewater.

View Article and Find Full Text PDF

Information can be quantified and expressed by uncertainty, and improving the decision level of uncertain information is vital in modeling and processing uncertain information. Dempster-Shafer evidence theory can model and process uncertain information effectively. However, the Dempster combination rule may provide counter-intuitive results when dealing with highly conflicting information, leading to a decline in decision level.

View Article and Find Full Text PDF

The network, with some or all characteristics of scale-free, self-similarity, self-organization, attractor and small world, is defined as a complex network. The identification of significant spreaders is an indispensable research direction in complex networks, which aims to discover nodes that play a crucial role in the structure and function of the network. Since influencers are essential for studying the security of the network and controlling the propagation process of the network, their assessment methods are of great significance and practical value to solve many problems.

View Article and Find Full Text PDF

In artificial intelligence systems, a question on how to express the uncertainty in knowledge remains an open issue. The negation scheme provides a new perspective to solve this issue. In this paper, we study quantum decisions from the negation perspective.

View Article and Find Full Text PDF

In decision-making systems, how to measure uncertain information remains an open issue, especially for information processing modeled on complex planes. In this paper, a new complex entropy is proposed to measure the uncertainty of a complex-valued distribution (CvD). The proposed complex entropy is a generalization of Gini entropy that has a powerful capability to measure uncertainty.

View Article and Find Full Text PDF

Multisource information fusion has received much attention in the past few decades, especially for the smart Internet of Things (IoT). Because of the impacts of devices, the external environment, and communication problems, the collected information may be uncertain, imprecise, or even conflicting. How to handle such kinds of uncertainty is still an open issue.

View Article and Find Full Text PDF

Uncertainty is inevitable in the decision-making process of real applications. Quantum mechanics has become an interesting and popular topic in predicting and explaining human decision-making behaviors, especially regarding interference effects caused by uncertainty in the process of decision making, due to the limitations of Bayesian reasoning. In addition, complex evidence theory (CET), as a generalized Dempster-Shafer evidence theory, has been proposed to represent and handle uncertainty in the framework of the complex plane, and it is an effective tool in uncertainty reasoning.

View Article and Find Full Text PDF

Multi-sensor data fusion (MSDF) is an efficient technology to enhance the performance of the system with the involvement of different kinds of sensors, which are broadly utilized in many fields at present. However, the data obtained from multi-sensors may have different degrees of uncertainty in the practical applications. Evidence theory is very useful to convey and manage uncertainty without a priori probability, so that it has been proverbially adopted in the information fusion fields.

View Article and Find Full Text PDF
CED: A Distance for Complex Mass Functions.

IEEE Trans Neural Netw Learn Syst

April 2021

Evidence theory is an effective methodology for modeling and processing uncertainty that has been widely applied in various fields. In evidence theory, a number of distance measures have been presented, which play an important role in representing the degree of difference between pieces of evidence. However, the existing evidential distances focus on traditional basic belief assignments (BBAs) modeled in terms of real numbers and are not compatible with complex BBAs (CBBAs) extended to the complex plane.

View Article and Find Full Text PDF

Dempster-Shafer (DS) evidence theory is widely applied in multi-source data fusion technology. However, classical DS combination rule fails to deal with the situation when evidence is highly in conflict. To address this problem, a novel multi-source data fusion method is proposed in this paper.

View Article and Find Full Text PDF

Time series data fusion is important in real applications such as target recognition based on sensors' information. The existing credibility decay model (CDM) is not efficient in the situation when the time interval between data from sensors is too long. To address this issue, a new method based on the ordered weighted aggregation operator (OWA) is presented in this paper.

View Article and Find Full Text PDF

Failure Mode and Effects Analysis (FMEA) has been regarded as an effective analysis approach to identify and rank the potential failure modes in many applications. However, how to determine the weights of team members appropriately, with the impact factor of domain experts' uncertainty in decision-making of FMEA, is still an open issue. In this paper, a new method to determine the weights of team members, which combines evidence theory, intuitionistic fuzzy sets (IFSs) and belief entropy, is proposed to analyze the failure modes.

View Article and Find Full Text PDF

The negation of probability provides a new way of looking at information representation. However, the negation of basic probability assignment (BPA) is still an open issue. To address this issue, a novel negation method of basic probability assignment based on total uncertainty measure is proposed in this paper.

View Article and Find Full Text PDF

Bayesian update is widely used in data fusion. However, the information quality is not taken into consideration in classical Bayesian update method. In this paper, a new Bayesian update with information quality under the framework of evidence theory is proposed.

View Article and Find Full Text PDF

Efficient matching of incoming events of data streams to persistent queries is fundamental to event stream processing systems in wireless sensor networks. These applications require dealing with high volume and continuous data streams with fast processing time on distributed complex event processing (CEP) systems. Therefore, a well-managed parallel processing technique is needed for improving the performance of the system.

View Article and Find Full Text PDF

Objective: To evaluate the dietary exposure level and health risk of antimony of children and adolescent in Hunan Province.

Methods: The content of antimony of main food were determined. The dietary exposure of children and adolescent from Hunan was calculated according to the weight and intake from Survey Report on Nutrition and Health Status of Chinese Residents Part 10: Nutrition and Health Data in2002 and combing the data of average and the 95% percentile of antimony.

View Article and Find Full Text PDF

Dempster⁻Shafer evidence theory is widely applied in various fields related to information fusion. However, how to avoid the counter-intuitive results is an open issue when combining highly conflicting pieces of evidence. In order to handle such a problem, a weighted combination method for conflicting pieces of evidence in multi-sensor data fusion is proposed by considering both the interplay between the pieces of evidence and the impacts of the pieces of evidence themselves.

View Article and Find Full Text PDF

The multi-sensor data fusion technique plays a significant role in fault diagnosis and in a variety of such applications, and the Dempster-Shafer evidence theory is employed to improve the system performance; whereas, it may generate a counter-intuitive result when the pieces of evidence highly conflict with each other. To handle this problem, a novel multi-sensor data fusion approach on the basis of the distance of evidence, belief entropy and fuzzy preference relation analysis is proposed. A function of evidence distance is first leveraged to measure the conflict degree among the pieces of evidence; thus, the support degree can be obtained to represent the reliability of the evidence.

View Article and Find Full Text PDF

Objective: For efficient and sophisticated analysis of complex event patterns that appear in streams of big data from health care information systems and support for decision-making, a triaxial hierarchical model is proposed in this paper.

Methods And Material: Our triaxial hierarchical model is developed by focusing on hierarchies among nested event pattern queries with an event concept hierarchy, thereby allowing us to identify the relationships among the expressions and sub-expressions of the queries extensively. We devise a cost-based heuristic by means of the triaxial hierarchical model to find an optimised query execution plan in terms of the costs of both the operators and the communications between them.

View Article and Find Full Text PDF

With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding.

View Article and Find Full Text PDF

Wireless sensor network plays an important role in intelligent navigation. It incorporates a group of sensors to overcome the limitation of single detection system. Dempster-Shafer evidence theory can combine the sensor data of the wireless sensor network by data fusion, which contributes to the improvement of accuracy and reliability of the detection system.

View Article and Find Full Text PDF

Objective: Recently, fuzzy soft sets-based decision making has attracted more and more interest. Although plenty of works have been done, they cannot provide the uncertainty or certainty of their results. To manage uncertainty is one of the most important and toughest tasks of decision making especially in medicine.

View Article and Find Full Text PDF

Sensor data fusion plays an important role in fault diagnosis. Dempster-Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7t2vmss7gn40am6hm4opofr0c5uptfqh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once