Publications by authors named "Fuyuan Peng"

This research examined the impact of exogenous thermophilic bacteria and ripening agents on greenhouse gas (GHG) emission, enzyme activity, and microbial community during composting. The use of ripening agents alone resulted in a 30.9 % reduction in CO emissions, while the use of ripening agents and thermophilic bacteria resulted in a 50.

View Article and Find Full Text PDF

The soil microbial community plays a vital role in the biogeochemical cycles of bioelements and maintaining healthy soil conditions in agricultural ecosystems. However, how the soil microbial community responds to mitigation measures for continuous cropping obstacles remains largely unknown. Here we examined the impact of quicklime (QL), chemical fungicide (CF), inoculation with earthworm (IE), and a biocontrol agent (BA) on the soil microbial community structure, and the effects toward alleviating crop yield decline in lily.

View Article and Find Full Text PDF

Fertilizers are important for agricultural production because they can effectively promote crop productivity. However, long-term fertilization can cause heavy metal accumulation in soils and crops. This study utilized sequential extraction, the diffusive gradient in the thin films (DGT) technique and risk assessment models to estimate the effects of the longest long-term fertilization (38 years) in China on cadmium (Cd) and arsenic (As) accumulation in soils.

View Article and Find Full Text PDF

Bacteria, as the key component of soil ecosystems, participate in nutrient cycling and organic matter decomposition. However, how fertilization regime affects the rhizospheric bacterial community of reddish paddy soil remains unclear. Here, a long-term fertilization experiment initiated in 1982 was employed to explore the impacts of different fertilization regimes on physicochemical properties and bacterial communities of reddish paddy rhizospheric soil in Central South China by sequencing the 16S rRNA gene.

View Article and Find Full Text PDF

Objective: To find out the optimal nitrogen application level of Desmodium styracifolium.

Method: A field experiment using randomized block design was carried out to study the effects of 5 nitrogen application levels (150, 187.5, 225.

View Article and Find Full Text PDF