Publications by authors named "Fuyong Wu"

Article Synopsis
  • The study examines how returning straw to paddy soils affects the breakdown of polycyclic aromatic hydrocarbons (PAHs) and their accumulation in rice, highlighting a gap in research compared to upland soils.
  • Incubation and pot experiments revealed that the optimal straw treatment for the most effective PAH degradation and lowest PAH levels in rice was 0.8% wheat straw, while 1% straw showed significant increases in degradation and concentration effects from conventional and pretreated straw methods.
  • Findings suggest that both the amount of straw returned and its treatment method influence PAH degradation in rice fields, with higher diversity of microbes enhancing the processes for breaking down these contaminants.
View Article and Find Full Text PDF

Selenium (Se)-rich farmland is a valuable and nonrenewable resource for addressing the global challenge of Se deficiency. However, frequent warnings of heavy metal pollution have threatened the safety and legitimacy of Se-rich functional agriculture, eventually damaged public health security. Definitive and judgmental quantitative studies on this hazardous phenomenon are still missing.

View Article and Find Full Text PDF

Using the aldehyde amine condensation procedure and the triphenylamine group as the skeleton structure, the new triphenylamine-aromatic aldehyde-succinylhydrazone probe molecule DHBYMH was created. A newly created acylhydrazone probe was structurally characterized by mass spectrometry (MS), NMR, and infrared spectroscopy (FTIR). Fluorescence and UV spectroscopy were used to examine DHBYMH's sensing capabilities for metal ions.

View Article and Find Full Text PDF

Iodine, primarily in the form of iodide (I), is the bioavailable form for the thyroid in the human body. Both deficiency and excess intake of iodide can lead to serious health issues, such as thyroid disease. Selecting iodide ions among anions has been a significant challenge for decades due to interference from other anions.

View Article and Find Full Text PDF

Selenium (Se) deficiency in rice will result in a Se hidden hunger threat to the general public's human health, particularly in areas where rice consumption is high. Nevertheless, the impact scope and coping strategies have not been given sufficient focus on a worldwide scale. In order to evaluate the impacts, causes and biofortification strategies of Se-deficient rice, this study collected data from the publications on three themes: market survey, field sampling and controlled experiments.

View Article and Find Full Text PDF

Enhanced rock weathering (ERW) in farmland is an emerging carbon dioxide removal technology with crushed silicate rocks for soil improvement. However, due to climatic variability and field data limitations, uncertainties remain regarding the influence of ERW on food security and soil carbon pools in temperate regions. This study focused to evaluate the crop productivity and carbon sequestration potential of farmland ERW in China by conducting field monitoring in different humid regions and ERW performance model.

View Article and Find Full Text PDF

Although the issue has been of much concern and has subsequently been controlled for years, the environmental risk of excess selenium (Se) in farmlands still has not been eliminated in Se-toxicity areas. Different types of farmland utilization can change Se behavior in soil. Thus, located field monitoring and surveys of various farmland soils in and around typical Se-toxicity areas spanning eight years were conducted in the tillage layer and deeper soils.

View Article and Find Full Text PDF

Different types of carbon substrates were widely used in soil remediation. However, differences of their impacts and related mechanisms on degradation of polycyclic aromatic hydrocarbons (PAHs) and microbial community structures in contaminated soil still remain unclear. Here, we investigated the effects of corn straw (S), glucose (G), straw combined with glucose (SG), and sodium azide (N, as an abiotic control) on PAHs fractions and bacterial communities in soil.

View Article and Find Full Text PDF

Lack systematic understanding of differences in environmental behavior of selenium between paddy and dryland soils affects Se biofortification and leads to human Se-related health risks. Therefore, this study investigated differences in Se concentration and bioavailability between paddy and dryland soils using data collected from literatures and field sampling. Our analysis showed paddy soil Se concentration in Se-rich area of China was significantly lower than that in dryland soil.

View Article and Find Full Text PDF

Soil selenium (Se) is mainly inorganic including selenate and selenite but organic forms such as selenomethionine (SeMet) and selenocystine (SeCys) are commonly present. Although organic Se is bioavailable or potentially bioavailable to plants, whether the effects of the organic Se on uptake and accumulation of Se in winter wheat differ in forms is still not clear. Both hydroponic experiments and a pot trial of whole plant growth stage were conducted to investigate the effects of SeMet and L-selenocystine (SeCys) on uptake and accumulation of Se in winter wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Background: Selenium (Se) is an essential micronutrient for humans and animals, but not for plants. Generally, cereals including wheat and rice are the main source of dietary Se for humans. Although arbuscular mycorrhizal fungi (AMF) are ubiquitous soil microbes and commonly develop symbionts with winter wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Monohaloacetic acids (mono-HAAs), a class of disinfection by-products widely occurred in drinking water, receives significant attention due to their extremely high toxicity. Many studies on the biological toxicity of mono-HAAs have been reported, yet the toxic effects of mono-HAAs on human renal cells (kidney is one of the target organs for disinfection by-products) has not been involved. Studies on organic precursors for mono-HAAs formation were also very limited due to their lower levels as compared to di-HAAs and tri-HAAs.

View Article and Find Full Text PDF

Selenium (Se) is an advantageous element to crops. However, the influence of arbuscular mycorrhizal fungi (AMF), phosphate (P) and selenite in soil on Se uptake by winter wheat remain elusive. Pot trials were carried out including seven levels of P (0, 12.

View Article and Find Full Text PDF

Foliar uptake, as an important pathway of polycyclic aromatic hydrocarbons (PAHs) accumulation in winter wheat, has a great contribution to wheat PAHs, which mainly depends on atmospheric PAHs level. An indoor simulation experiment was conducted to explore the effects of foliar exposure to PAHs at different growth stages on PAHs uptake in wheat. Three levels (0, 0.

View Article and Find Full Text PDF

Root exudates can stimulate microbial degradation in rhizosphere, but it is unclear whether the rhizodegradation of polycyclic aromatic hydrocarbons (PAHs) occurs in corn straw-amended soil. Either citric acid or corn straw was added into PAHs-contaminated soil to investigate their effect on the removal of PAHs. Either corn straw (Y) or combined application of corn straw and citric acid (YN100) significantly (p < 0.

View Article and Find Full Text PDF

Selenium (Se) deficiency has been a public health concern for years. Arbuscular mycorrhizal fungi (AMF) play an essential role in improving Se uptake in crops, but related mechanisms still remain unclear. To explore the influence of AMF on uptake of Se in winter wheat, a pot experiment was conducted to inoculate wheat with Funneliformis mosseae (F.

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles (SeNPs) has been used to enhance Se concentration in winter wheat, but soil application of SeNPs on Se uptake in the crop and their transformation in soil are still limited. This study investigated the effects of varying sizes (50, 100, 200 nm) and concentrations (0, 2, 5, 25, 100 mg kg) of chemical synthesized SeNPs in soil on uptake and accumulation of Se in the crop at maturity and related mechanisms. SeNPs not only posed very low toxic to plant growth, except for leaf, but also significantly enhanced grain Se concentration.

View Article and Find Full Text PDF

Monitoring of disinfection by-products (DBPs) in water supply system is important to ensure safety of drinking water. Yet it is a laborious job. Developing predictive DBPs models using simple and easy parameters is a promising way.

View Article and Find Full Text PDF

Either biosurfactants or agricultural wastes were frequently used to enhance degradation of PAHs in soil, but there is still not clear whether combined application of biosurfactants and agricultural wastes is more efficient. Rhamnolipid and/or agricultural wastes (mushroom substrate or maize straw) were mixed with PAHs-contaminated soil to explore their performances in the removal of PAHs. The present study showed that rhamnolipid combined with mushroom substrate (MR, 30.

View Article and Find Full Text PDF

Aberrant expression of microRNAs (miRNAs/miRs) plays a key role in the development of non-small cell lung cancer (NSCLC). In the present study, lower miRNA (miR)-491-5p levels and a higher forkhead box P4 (FOXP4) mRNA level were observed in NSCLC tissues and cell lines, compared to adjacent tissues and the normal human lung epithelial cell line BEAS-2B, respectively. A549 cell proliferation and migration were inhibited upon transfection of miR-491-5p mimics compared to miR-negative control (NC) mimics.

View Article and Find Full Text PDF

Haloketones (HKs) is one class of disinfection by-products (DBPs) which is genetically toxic and mutagenic. Monitoring HKs in drinking water is important for drinking water safety, yet it is a time-consuming and laborious job. Developing predictive models of HKs to estimate their occurrence in drinking water is a good alternative, but to date no study was available for HKs modeling.

View Article and Find Full Text PDF

Increasing contamination of urban soil by persistent organic pollutants is a major environmental issue. The purpose of the present study was to investigate the distribution, source and human health risk of polycyclic aromatic hydrocarbons (PAHs) in different functional areas in Zhengzhou City, China. Total 130 soil samples were collected from surface layer (0-10 cm) in urban road, overpass, residential area and park in the city during January 2019.

View Article and Find Full Text PDF

A field investigation was conducted to study the dynamic distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in winter wheat in the surrounds of a coal-fired power plant. During March to June 2019, various tissues of winter wheat and the corresponding rhizosphere soil were collected for determination of PAHs. A clear spatial downward trend was found in concentration of ΣPAHs in rhizosphere soil and wheat grain (194-237 μg kg DM) with the increasing distance from the coal-fired power plant.

View Article and Find Full Text PDF

An indoor simulation experiment was conducted to explore the effects of cuticular wax content and specific leaf area (SLA) on accumulation and distribution of PAHs in different tissues of wheat leaf. Three levels (0, 1.25, 6.

View Article and Find Full Text PDF

Control of risks caused by disinfection by-products (DBPs) requires pre-knowledge of their levels in drinking water. In this study, a radial basis function (RBF) artificial neural network (ANN) was proposed to predict the concentrations of haloacetic acids (HAAs, one dominant class of DBPs) in actual distribution systems. To train and verify the RBF ANN, a total of 64 samples taken from a typical region (Jinhua region) in China were characterized in terms of water characteristics (dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UVA), NO-N level, NH-N level, Br and pH), temperature and the prevalent HAAs concentrations.

View Article and Find Full Text PDF