Publications by authors named "Fuyong Song"

Background: Sterile alpha and toll interleukin receptor motif-containing protein 1 (SARM1) are primarily expressed in the mammalian nervous system, with their presence in neurons being associated with mitochondrial aggregation. SARM1 functions as a mediator of cell death and morphological changes, while also regulating Waller degeneration in nerve fibers and influencing glial cell formation.

Purpose: Recent reports demonstrate SARM1 serves as a connector in the Toll-like receptor (TLR) pathway and plays a role in regulating inflammation during periods of stress such as infection, trauma, and hypoxia.

View Article and Find Full Text PDF
Article Synopsis
  • Deoxynivalenol (DON) exposure can lead to endoplasmic reticulum stress, increased mitochondrial reactive oxygen species (ROS), and changes in macrophage behavior, particularly important for children's health.
  • In mice modeling human ages 7-12, low-level DON exposure (0.5 μg/kg bw/day) caused significant liver and gut inflammation after 6 weeks.
  • The study identifies a mechanism involving the interaction of proteins MAPK7 and AhR, which drives inflammatory reactions and highlights the potential health risks of DON exposure in children.
View Article and Find Full Text PDF

The inflammatory response is a significant factor in acetaminophen (APAP)-induced acute liver injury. And it can be mediated by macrophages of different origins. However, whether Kupffer cells and mononuclear-derived macrophages play an injury or protective role in APAP hepatotoxicity is still unclear.

View Article and Find Full Text PDF

2,5-hexanedione (HD) is the γ-diketone metabolite of industrial organic solvent n-hexane, primarily responsible for n-hexane neurotoxicity. Previous studies have shown that the formation of pyrrole adducts (PAs) is crucial for the toxic axonopathy induced by HD. However, the exact mechanism underlying PAs-induced axonal degeneration remains unclear.

View Article and Find Full Text PDF

Exposure to carbon disulfide (CS) is a recognized risk factor in the pathogenesis of Parkinson's disease, yet the underlying mechanisms of deleterious effects on mitochondrial integrity have remained elusive. Here, through establishing CS exposure models in rat and SH-SY5Y cells, we demonstrated that highly expressed α-synuclein (α-Syn) is transferred to mitochondria via membrane proteins such as Tom20 and leads to mitochondrial dysfunction and mitochondrial oxidative stress, which ultimately causes neuronal injury. We first found significant mitochondrial damage and oxidative stress in CS-exposed rat midbrain and SH-SY5Y cells and showed that mitochondrial oxidative stress was the main factor of mitochondrial damage by Mitoquinone intervention.

View Article and Find Full Text PDF

Background: Liver fibrosis typically develops as a result of chronic liver injury, which involves inflammatory and regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM2), predominantly expressing in hepatic non-parenchymal cells, plays a crucial role in regulating the function of macrophages. However, its mechanism in liver fibrosis remains poorly defined.

View Article and Find Full Text PDF

Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca concentrations. This study was designed to investigate that deregulated cytosolic Ca may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN.

View Article and Find Full Text PDF

In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD.

View Article and Find Full Text PDF

Neurodegenerative diseases are a group of diseases characterized by the progressive loss of neurons, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. These diseases have a high incidence and mortality rate globally, placing a heavy burden on patients and their families. The pathogenesis of neurodegenerative diseases is complex, and there are no effective treatments at present.

View Article and Find Full Text PDF

As a major alternative to the brominated flame retardants, the production and use of organophosphorus flame retardants (OPFRs) are increasing. And tris (1,3-dichloro-2-propyl) phosphate (TDCPP), one of the most widely used OPFRs, is now commonly found in a variety of products, such as building materials, furniture, bedding, electronic equipment, and baby products. TDCPP does not readily degrade in the water and tends to accumulate continuously in the environment.

View Article and Find Full Text PDF

Autophagic dysfunction in neurodegenerative diseases is being extensively studied, yet the exact mechanism of macroautophagy/autophagy in axon degeneration is still elusive. A recent study by Kim et al. links autophagic stress to the sterile α and toll/interleukin 1 receptor motif containing protein 1 (SARM1)-dependent core axonal degeneration program, providing a new insight into the role of autophagy in axon degeneration.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a key pathological event in the acute liver injury following the overdose of acetaminophen (APAP). Calpain is the calcium-dependent protease, recent studies demonstrate that it is involved in the impairment of mitochondrial dynamics. The mitochondrial unfolded protein response (UPR) is commonly activated in the context of mitochondrial damage following pathological insults and contributes to the maintenance of the mitochondrial quality control through regulating a wide range of gene expression.

View Article and Find Full Text PDF

The application of different types of pesticides can result in the coexistence of multiple pesticide residues in our food and the environment. This can have detrimental effects on the health of offspring across generations when parents are exposed to these pesticides. Therefore, it is imperative to understand the long-term effects that can be inherited by future generations when assessing the risks associated with pesticides.

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plastic additive with persistent characteristics in the environment. This study was designed to investigate the detrimental effects of chronic DEHP exposure at environmental-relevant doses on bone metabolism and the underlying mechanisms. It was found that exposure to 25 μg/kg bw and 50 μg/kg bw DEHP for 29 weeks led to a reduction of whole-body bone mineral density (BMD), femur microstructure damage, decreased femur new bone formation, and increased femur bone marrow adipogenesis in C57BL/6 female mice, which was not observed in mice exposed to 5000 μg/kg bw DEHP.

View Article and Find Full Text PDF

The relationship between environmental neurotoxicant exposure and neurodegenerative diseases is being extensively investigated. Carbon disulfide, a classic neurotoxicant and prototype of dithiocarbamates fungicides and anti-inflammatory agents, has been detected in urban adults, raising questions about whether exposure to carbon disulfide is associated with a high incidence of neurodegenerative diseases. Here, using rat models and SH-SY5Y cells, we investigated the possible mechanistic linkages between carbon disulfide neurotoxicity and the expression of TDP-43 protein, a marker of amyotrophic lateral sclerosis/frontotemporal lobar degeneration.

View Article and Find Full Text PDF

Health risks associated with acrylamide (ACR) or high-fat diet (HFD) exposure alone have been widely concerned in recent years. In a realistic situation, ACR and HFD are generally co-existence, and both are risk factors for the development of neurological diseases. The purpose of the present study was to investigate the combined effects of ACR and HFD on the motor nerve function.

View Article and Find Full Text PDF

Exposure to carbon disulfide (CS) has been associated with an increased incidence of parkinsonism in workers, but the mechanism underlying this association remains unclear. Using a rat model, we investigated the effects of chronic CS exposure on parkinsonian pathology. Our results showed that CS exposure leads to significant motor impairment and neuronal damage, including loss of dopaminergic neurons and degeneration of the substantia nigra pars compacta (SNpc).

View Article and Find Full Text PDF

Carbon tetrachloride (CCl)-mediated liver damage has been well recognized, but the sources and mechanisms of mitochondrial damage during this progress still remain poorly understood. Accumulating evidence has revealed that LonP1-TDP-43 pathway affect proper mitochondrial integrity and function in neurodegenerative diseases. The current study aims to investigate whether mitochondrial oxidative stress regulate LonP1-TDP-43 pathway and the possible roles of this pathway in CCl-driven liver fibrosis.

View Article and Find Full Text PDF

Occupational and environmental exposure to acrylamide (ACR) can cause selective peripheral and central nerve fiber degeneration. IP3R-3 is an important transmembrane Ca channel on the endoplasmic reticulum (ER), previous studies have found that ACR could induce Ca-dependent calpain activation and axon injury, but the exact role of IP3R-3 in ACR neuropathy is still unclear. Here we show that ACR exposure (40 mg/kg) markedly increased the ubiquitination of IP3R-3 in rat spinal cords, and promoted the degradation of IP3R-3 through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

Acrylamide (ACR), a common industrial ingredient that is also found in many foodstuffs, induces dying-back neuropathy in humans and animals. However, the mechanisms remain poorly understood. Sterile alpha and toll/interleukin 1 receptor motif-containing protein 1 (SARM1) is the central determinant of axonal degeneration and has crosstalk with different cell death programs to determine neuronal survival.

View Article and Find Full Text PDF

Here we report that macrophage AHR/TLR/STAT signaling axis is implicated in the colon colitis induced by non-canonical AHR ligand aflatoxin B1 (AFB1). In BALB/c mice gavaged with 5, 25 and 50 µg/kg body weight/day AFB1, we observed severe colitis featured by over-recruitment of myeloid lineage immune cells such as monocytes/macrophage in colon lamina propria. Stressed and damaged colon epithelial cells were observed in low-dose group, while twisted and shortened intestinal crypts being found in middle dose group.

View Article and Find Full Text PDF

The potential obesogenic roles of di(2-ethylhexyl) phthalate (DEHP) have attracted great attention. The current study aimed to evaluate the combined effects of chronic low-dose DEHP (0.05 mg/kg BW) and a high-fat diet (HFD) on obesity in female mice and explore the underlying mechanisms.

View Article and Find Full Text PDF

Acrylamide (ACR) is a common neurotoxicant that can induce central-peripheral neuropathy in human beings. ACR from occupational setting and foods poses a potential threat to people's health. Purkinje cells are the only efferent source of cerebellum, and their output is responsible for coordinating motor activity.

View Article and Find Full Text PDF