Publications by authors named "Fuyi Li"

Shotgun metagenomics has become a pivotal technology in microbiome research, enabling in-depth analysis of microbial communities at both the high-resolution taxonomic and functional levels. This approach provides valuable insights of microbial diversity, interactions, and their roles in health and disease. However, the complexity of data processing and the need for reproducibility pose significant challenges to researchers.

View Article and Find Full Text PDF

Androstenedione (AD) is an important intermediate for the production of steroidal drugs. The process of transforming phytosterols into AD by is mainly the degradation process of the phytosterol side chain, and the excessive accumulation of propionyl-CoA produced by will produce toxic effects, which seriously restricts the transformation performance of strains. In this study, sp.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell RNA sequencing (scRNA-seq) provides detailed insights into gene expression at the individual cell level, but clustering these cells remains challenging due to complex data issues like high dimensionality and dropout values.
  • To address this, researchers devised scSimGCL, a new framework utilizing graph contrastive learning that improves high-quality representation for better cell clustering outcomes.
  • Experimental results demonstrate scSimGCL's effectiveness compared to existing methods, with findings suggesting it can serve as a valuable tool for future cell clustering research.
View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic and antimicrobial-resistant (AMR) germs are spread between humans, animals, and the environment, making diseases harder to treat.
  • We need better ways to track these germs by combining efforts from different fields instead of working separately.
  • The text suggests improving detection methods and creating strong systems to share information about these germs, helping everyone stay healthier.
View Article and Find Full Text PDF
Article Synopsis
  • Single-cell RNA sequencing (scRNA-seq) allows for detailed analysis of individual cell transcriptomes, making it essential for understanding complex cellular diversity and behavior patterns in heterogeneous datasets.
  • A new deep learning algorithm called scDFN significantly improves single-cell clustering by using a fusion network strategy, which combines an autoencoder and an improved graph autoencoder for better analysis of gene expression and topological features.
  • Comparative tests show that scDFN outperforms existing clustering methods, as evidenced by superior metrics like Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI), and it shows strong performance across various datasets while handling batch effects well.
View Article and Find Full Text PDF

Protein-metal ion interactions play a central role in the onset of numerous diseases. When amino acid changes lead to missense mutations in metal-binding sites, the disrupted interaction with metal ions can compromise protein function, potentially causing severe human ailments. Identifying these disease-associated mutation sites within metal-binding regions is paramount for understanding protein function and fostering innovative drug development.

View Article and Find Full Text PDF

Molecular property prediction is a key component of AI-driven drug discovery and molecular characterization learning. Despite recent advances, existing methods still face challenges such as limited ability to generalize, and inadequate representation of learning from unlabeled data, especially for tasks specific to molecular structures. To address these limitations, we introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.

View Article and Find Full Text PDF

Recent advancements in high-throughput sequencing technologies have significantly enhanced our ability to unravel the intricacies of gene regulatory processes. A critical challenge in this endeavor is the identification of variant effects, a key factor in comprehending the mechanisms underlying gene regulation. Non-coding variants, constituting over 90% of all variants, have garnered increasing attention in recent years.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short non-coding RNAs involved in various cellular processes, playing a crucial role in gene regulation. Identifying miRNA targets remains a central challenge and is pivotal for elucidating the complex gene regulatory networks. Traditional computational approaches have predominantly focused on identifying miRNA targets through perfect Watson-Crick base pairings within the seed region, referred to as canonical sites.

View Article and Find Full Text PDF

N6-methyladenosine (m$^{6}$A) is a widely-studied methylation to messenger RNAs, which has been linked to diverse cellular processes and human diseases. Numerous databases that collate m$^{6}$A profiles of distinct cell types have been created to facilitate quick and easy mining of m$^{6}$A signatures associated with cell-specific phenotypes. However, these databases contain inherent complexities that have not been explicitly reported, which may lead to inaccurate identification and interpretation of m$^{6}$A-associated biology by end-users who are unaware of them.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers tackled the problem of converting waste shrimp and crab shells into usable resources, focusing on the enzymatic breakdown of chitin.
  • They successfully enriched a specific microorganism, XHQ10, which can degrade shrimp shell powder and produces enzymes crucial for breaking down chitin.
  • This study is the first to demonstrate the direct preparation of chitin oligosaccharides (CHOSs) from shrimp shell powder, offering a promising method for the large-scale use of chitin resources.
View Article and Find Full Text PDF

Motivation: The asymmetrical distribution of expressed mRNAs tightly controls the precise synthesis of proteins within human cells. This non-uniform distribution, a cornerstone of developmental biology, plays a pivotal role in numerous cellular processes. To advance our comprehension of gene regulatory networks, it is essential to develop computational tools for accurately identifying the subcellular localizations of mRNAs.

View Article and Find Full Text PDF

NLRP3 inflammasome is critical in the development and progression of many metabolic diseases driven by chronic inflammation, but its effect on the pathology of postmenopausal osteoporosis (PMOP) remains poorly understood. We here firstly examined the levels of NLRP3 inflammasome in PMOP patients by ELISA. Then we investigated the possible mechanisms underlying the effect of NLRP3 inflammasome on PMOP by RNA sequencing of osteoblasts treated with NLRP3 siRNA and qPCR.

View Article and Find Full Text PDF

The Type III Secretion Systems (T3SSs) play a pivotal role in host-pathogen interactions by mediating the secretion of type III secretion system effectors (T3SEs) into host cells. These T3SEs mimic host cell protein functions, influencing interactions between Gram-negative bacterial pathogens and their hosts. Identifying T3SEs is essential in biomedical research for comprehending bacterial pathogenesis and its implications on human cells.

View Article and Find Full Text PDF

Motivation: PE/PPE proteins, highly abundant in the genome, play a vital role in virulence and immune modulation. Understanding their functions is key to comprehending the internal mechanisms of . However, a lack of dedicated resources has limited research into PE/PPE proteins.

View Article and Find Full Text PDF

This study introduces a novel approach for synthesizing Benzoxazine-centered Polychiral Polyheterocycles (BPCPHCs) via an innovative asymmetric carbene-alkyne metathesis-triggered cascade. Overcoming challenges associated with intricate stereochemistry and multiple chiral centers, the catalytic asymmetric Carbene Alkyne Metathesis-mediated Cascade (CAMC) is employed using dirhodium catalyst/Brønsted acid co-catalysis, ensuring precise stereo control as validated by X-ray crystallography. Systematic substrate scope evaluation establishes exceptional diastereo- and enantioselectivities, creating a unique library of BPCPHCs.

View Article and Find Full Text PDF

Chronic pain is a growing global health problem affecting at least 10% of the world's population. However, current chronic pain treatments are inadequate. Voltage-gated sodium channels (Navs) play a pivotal role in regulating neuronal excitability and pain signal transmission and thus are main targets for nonopioid painkiller development, especially those preferentially expressed in dorsal root ganglial (DRG) neurons, such as Nav1.

View Article and Find Full Text PDF

Since the mass production and extensive use of chloroquine (CLQ) would lead to its inevitable discharge, wastewater treatment plants (WWTPs) might play a key role in the management of CLQ. Despite the reported functional versatility of ammonia-oxidizing bacteria (AOB) that mediate the first step for biological nitrogen removal at WWTP (i.e.

View Article and Find Full Text PDF

Studying the effect of single amino acid variations (SAVs) on protein structure and function is integral to advancing our understanding of molecular processes, evolutionary biology, and disease mechanisms. Screening for deleterious variants is one of the crucial issues in precision medicine. Here, we propose a novel computational approach, TransEFVP, based on large-scale protein language model embeddings and a transformer-based neural network to predict disease-associated SAVs.

View Article and Find Full Text PDF

Origins of replication sites (ORIs) are crucial genomic regions where DNA replication initiation takes place, playing pivotal roles in fundamental biological processes like cell division, gene expression regulation, and DNA integrity. Accurate identification of ORIs is essential for comprehending cell replication, gene expression, and mutation-related diseases. However, experimental approaches for ORI identification are often expensive and time-consuming, leading to the growing popularity of computational methods.

View Article and Find Full Text PDF

The multidrug-resistant Gram-negative bacteria has evolved into a worldwide threat to human health; over recent decades, polymyxins have re-emerged in clinical practice due to their high activity against multidrug-resistant bacteria. Nevertheless, the nephrotoxicity and neurotoxicity of polymyxins seriously hinder their practical use in the clinic. Based on the quantitative structure-activity relationship (QSAR), analogue design is an efficient strategy for discovering biologically active compounds with fewer adverse effects.

View Article and Find Full Text PDF

Proteases contribute to a broad spectrum of cellular functions. Given a relatively limited amount of experimental data, developing accurate sequence-based predictors of substrate cleavage sites facilitates a better understanding of protease functions and substrate specificity. While many protease-specific predictors of substrate cleavage sites were developed, these efforts are outpaced by the growth of the protease substrate cleavage data.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are short peptides that play crucial roles in diverse biological processes and have various functional activities against target organisms. Due to the abuse of chemical antibiotics and microbial pathogens' increasing resistance to antibiotics, AMPs have the potential to be alternatives to antibiotics. As such, the identification of AMPs has become a widely discussed topic.

View Article and Find Full Text PDF

The genome of Mycobacterium tuberculosis contains a relatively high percentage (10%) of genes that are poorly characterised because of their highly repetitive nature and high GC content. Some of these genes encode proteins of the PE/PPE family, which are thought to be involved in host-pathogen interactions, virulence, and disease pathogenicity. Members of this family are genetically divergent and challenging to both identify and classify using conventional computational tools.

View Article and Find Full Text PDF

Background: Promoters are DNA regions that initiate the transcription of specific genes near the transcription start sites. In bacteria, promoters are recognized by RNA polymerases and associated sigma factors. Effective promoter recognition is essential for synthesizing the gene-encoded products by bacteria to grow and adapt to different environmental conditions.

View Article and Find Full Text PDF