Hasubanan alkaloids represent a distinct class of alkaloids bearing a structural resemblance to morphine, predominantly found in herbals of the Stephania genus. Their intriguing molecular architecture and potential analgesic properties have captured the interest of medicinal chemists worldwide. This review meticulously examines the natural distribution, structural characteristics, biosynthetic pathways, synthetic methodologies, and biological activities of hasubanans.
View Article and Find Full Text PDFFrom the 95% ethanol aqueous extract of the roots of Clausena lansium, six previously undescribed alkaloids (1, 2a, 2b, 15, 24a, 24b), a pair of prenylated phenylpropenols (26a, 26b), two coumarins (27, 28), and two undescribed sesquiterpenes (37, 38) were isolated and identified using spectroscopic and electron circular dichroism data, together with thirty-two known compounds. The absolute configurations of three alkaloids (3a, 3b, 4a) were determined for the first time. In vitro assay showed that alkaloids 7, 10, 12, 19, and furanocoumarins 34, 35 displayed inhibitory effects on the production of nitric oxide in lipopolysaccharide (LPS)-induced BV-2 microglial cells, which were stronger than that of the minocycline (positive control).
View Article and Find Full Text PDFEffective wound healing is critical for patient care, and the development of novel wound dressing materials that promote healing, prevent infection, and are user-friendly is of great importance, particularly in the context of point-of-care testing (POCT). This study reports the synthesis of a hydrogel material that can be produced in less than 10 s and possesses antibacterial activity against both gram-negative and gram-positive microorganisms, as well as the ability to inhibit the growth of eukaryotic cells, such as yeast. The hydrogel is formed wholly based on covalent-like hydrogen bonding interactions and exhibits excellent mechanical properties, with the ability to stretch up to more than 600% of its initial length.
View Article and Find Full Text PDFThe ethanol extract of roots of Derris taiwaniana gave two undescribed compounds, 3,3'-dimethoxy-5'-hydroxystilbene-4-O-β-apiofuranosyl-(1→6)-β-D-glucopyranoside (1) and 4',5-dihydroxy-3'-methoxyisoflavone-7-O-β-apiofuranosyl-(1→6)-β-D-glucopyranoside (2), along with thirty known components. Among them, compounds 14, 16-17, 23, 26-32 were isolated from this genus for the first time. Their structures were established based on physico-chemical properties and spectroscopic data, the lung epithelial cell protective effects were evaluated using NNK-induced MLE-12 cells.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2023
As a mature platform compound, citric acid (CA) is mainly produced by Aspergillus niger (A. niger) through submerged fermentation. However, the CA fermentation process is still regulated based on experience and limited offline data, so real-time monitoring and intelligent precise control of the fermentation process cannot be carried out.
View Article and Find Full Text PDFThe experiment aimed to compare the effects of citric acid residue (CAR) to that of three commonly used short-chain fatty acids on the fermentation quality, aerobic stability and structural carbohydrate degradation of lucerne ensiled with lactic acid bacteria (LAB) inoculants. Fresh lucerne was ensiled with distilled water (control), LAB inoculant (L), CAR + LAB inoculant (CL), formic acid + LAB inoculant (FL), acetic acid + LAB inoculant (AL) and propanoic acid + LAB inoculant (PL) for 50 days. Chemical composition and microbial populations were determined after ensiling.
View Article and Find Full Text PDFCitric acid (CA) as an extremely important platform compound has attracted intense attention due to wide applications and huge markets. Here, we proposed a novel method, using pellet inoculation to replace spores, and constructed the seed recycling cultivation process, effectively avoided the longtime (spore preparation 30 days) of seed culture (including spores germination 12 h) in the traditional batch-fermentation. On this basis, using pellet-dispersion strategy, the bottleneck caused by the mycelium structure was overcome, with the seed restoring high cell-viability with CA titer (11.
View Article and Find Full Text PDF