The pore shapes of two-dimensional covalent organic frameworks (2D COFs) significantly limit their practical applications in separation and catalysis. Although various 2D COFs with polygonal pores have been well developed, constructing COFs with pentagonal pores remains an enormous challenge. In this work, we developed one kind of pentagonal COFs with the topological structure for the first time, through the rational combination of and symmetric building blocks.
View Article and Find Full Text PDFDespite approximately 70 % of the earth being covered by water, water shortage has emerged as an urgent social challenge. Sorbent-based atmospheric water harvesting stands out as a potent approach to alleviate the situation, particularly in arid regions. This method requires adsorbents with ample working capacity, rapid kinetics, low energy costs, and long-term stability under operating conditions.
View Article and Find Full Text PDFThe growth of disorganized lithium dendrites and weak solid electrolyte interphase greatly impede the practical application of lithium metal batteries. Herein, we designed and synthesized a new kind of stable polyimide covalent organic frameworks (COFs), which have a high density of well-aligned lithiophilic quinoxaline and phthalimide units anchored within the uniform one-dimensional channels. The COFs can serve as an artificial solid electrolyte interphase on lithium metal anode, effectively guiding the uniform deposition of lithium ions and inhibiting the growth of lithium dendrites.
View Article and Find Full Text PDFDeveloping materials to harvest water from the air is of great importance to alleviate the water shortage for people living in arid regions, where the annual average relative humidity (RH) is lower than 0.4. In this work, we report a general nitrogen atom incorporation strategy to prepare high-performance covalent organic frameworks (COFs) for water harvesting from the air in arid areas.
View Article and Find Full Text PDF