Publications by authors named "Fuxia Pan"

Waterborne pathogens and their associated diseases are major threats to public health, and surveillance of pathogens and identification of the sources of pollution are imperative for preventing infections. However, simultaneously quantitative detection of multiple pathogens and pollution sources in water environments is the major challenge. In this study, we developed and validated a highly sensitive (mostly >80%) and highly specific (>99%) high-throughput quantitative PCR (HT-qPCR) approach, which could simultaneously quantify 68 marker genes of 33 human pathogens and 23 fecal markers of 10 hosts.

View Article and Find Full Text PDF

For the purpose of enhancing the removal rate of nitrogen (N) and organic matters, intermittent aeration and carbon source were used in filled-and-drained vertical flow constructed wetlands (VFCWs). The results showed that the best removal of COD (74.16%), NH-N (93.

View Article and Find Full Text PDF

A vertical flow constructed wetland (VFCW) packed with the different substrates was designed to remediate the antibiotics in the wastewater. Zeolite (CW-Z) paralleled with Manganese (Mn) ore (CW-M) and biochar (CW-C) were used to enhance the synchronous removal of ciprofloxacin hydrochloride (CIPH), sulfamethazine (SMZ) and nitrogen (N) from the wastewater. The result indicated that CW-M had a significant potential to remove CIPH (93%), SMZ (69%), TN (71%), NH-N (94%) and NO-N (94%) across all the treatments.

View Article and Find Full Text PDF

Carbon source and dissolved oxygen are the critical factors which sustain the stable redox environment for the microbes to implement the removal of nitrogen and organics in vertical flow constructed wetlands (VFCWs). The effect mechanisms of the COD/N ratios in intermittently aerated VFCWs are needed to be investigated in order to increase the synchronous removal efficiency of pollutants. In this study, the combined effects of COD/N ratios (3, 6, 12) and intermittent aeration in VFCWs on pollutant removal, microbial communities and related function genes were studied.

View Article and Find Full Text PDF

The application of straw and biochar to soil has received great attention because of their potential benefits such as fertility improvement and carbon (C) sequestration. The abiotic effects of these materials on C and nitrogen (N) cycling in the soil ecosystem have been previously investigated, however, the effects of straw or its derived biochar on the soil microbial community structure and function are not well understood. For this purpose, a short-term incubation experiment was conducted using (13)C-labeled rice straw and its derived biochar ((13)C-labeled biochar) to deepen our understanding about soil microbial community dynamics and function in C sequestration and greenhouse gas emission in the acidic paddy soil amended with these materials.

View Article and Find Full Text PDF

Rice straw application and flooding are common practices in rice production, both of which can induce changes in the microbial community. This study used soil microcosms to investigate the impact of water status (saturated and nonsaturated) and straw application (10 g kg(-1) soil) on soil microbial composition (phospholipid fatty acid analysis) and activity (MicroResp(™) method). Straw application significantly increased total PLFA amount and individual PLFA components independent of soil moisture level.

View Article and Find Full Text PDF