In knowledge-based treatment planning (KBTP) for intensity-modulated radiation therapy (IMRT), the quality of the plan is dependent on the sophistication of the predicted dosimetric information and its application. In this paper, we propose a KBTP method that based on the effective and reasonable utilization of a three-dimensional (3D) dose prediction on planning optimization. We used an organs-at-risk (OARs) dose distribution prediction model to create a voxel-based dose sequence based optimization objective for OARs doses.
View Article and Find Full Text PDFObjectives: To investigate whether dosiomics can benefit to IMRT treated patient's locoregional recurrences (LR) prediction through a comparative study on prediction performance inspection between radiomics methods and that integrating dosiomics in head and neck cancer cases.
Materials And Methods: A cohort of 237 patients with head and neck cancer from four different institutions was obtained from The Cancer Imaging Archive and utilized to train and validate the radiomics-only prognostic model and integrate the dosiomics prognostic model. For radiomics, the radiomics features were initially extracted from images, including CTs and PETs, and selected on the basis of their concordance index (CI) values, then condensed via principle component analysis.
Objective: To establish the association between the geometric anatomical characteristics of the patients and the corresponding three-dimensional (3D) dose distribution of radiotherapy plan via feed-forward back-propagation neural network for clinical prediction of the plan dosimetric features.
Methods: A total of 25 fixed 13-field clinical prostate cancer intensity-modulated radiation therapy (IMRT)/stereotactic body radiation therapy (SBRT) plans were collected with a prescribed dose of 50 Gy. With the distance from each voxel to the planned target volume (PTV) boundary, the distance from each voxel to each organ-at-risk (OAR), and the volume of PTV as the geometric anatomical characteristics of the patients, the voxel deposition dose was used as the plan dosimetric feature.