Background/objectives: The sucrose non-fermentation-related kinase 1 (SnRK1) protein complex in plants plays an important role in energy metabolism, anabolism, growth, and stress resistance. SnRK1 is a heterotrimeric complex. The SnRK1 complex is mainly composed of α, β, βγ, and γ subunits.
View Article and Find Full Text PDFTrehalose-6-phosphate synthase (TPS) is essential for plant growth and development, linking trehalose-6-phosphate (T6P) to carbon metabolism. However, little is known about the gene family in peaches and their potential roles in regulating carbohydrates in peach fruit. In this study, nine genes were identified in the peach genome and named according to the homologous genes in .
View Article and Find Full Text PDFLATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKEs (LBDs/ASLs) are plant-specific transcription factors that function downstream of auxin-regulated lateral root (LR) formation. Our previous research found that PpLBD16 positively regulates peach (Prunus persica) LR formation. However, the downstream regulatory network and target genes of PpLBD16 are still largely unknown.
View Article and Find Full Text PDFResistance genes (R genes) are a class of genes that are immune to a wide range of diseases and pests. In planta, NLR genes are essential components of the innate immune system. Currently, genes belonging to NLR family have been found in a number of plant species, but little is known in peach.
View Article and Find Full Text PDFThe main peach-producing area in Shandong is an important peach fruit-producing area in China. Understanding the nutritional properties of the soil in peach orchards helps us to understand the evolution of soil properties and adjust management methods in a timely manner. This study focuses on 52 peach orchards in the main peach-producing area in Shandong as the research object.
View Article and Find Full Text PDFNitrogen availability and uptake levels can affect nutrient accumulation in plants. In this study, the effects of valine and urea supplementation on the growth of new shoots, lignin content, and carbon and the nitrogen metabolism of '' were investigated. Relative to fertilization with urea, the application of valine inhibited shoot longitudinal growth, reduced the number of secondary shoots in autumn, and increased the degree of shoot lignification.
View Article and Find Full Text PDFWaterlogging occurs due to poor soil drainage or excessive rainfall. It is a serious abiotic stress factor that negatively affects crop growth. Waterlogging often causes plants to shed leaves, fruits, and, ultimately, to die.
View Article and Find Full Text PDFEnhancing fruit sugar contents, especially for high-flavonoid apples with a sour taste, is one of the main goals of horticultural crop breeders. This study analyzed sugar accumulation and the underlying mechanisms in the F2 progenies of a hybridization between the high-sugar apple (Malus × domestica) variety "Gala" and high-flavonoid apple germplasm "CSR6R6". We revealed that MdSWEET9b (sugars will eventually be exported transporter) helps mediate sugar accumulation in fruits.
View Article and Find Full Text PDFSugar and anthocyanin are important indicators of fruit quality, and understanding the mechanism underlying their accumulation is essential for breeding high-quality fruit. We identified an R2R3-MYB transcription factor MdMYB305 in the red-fleshed apple progeny, which was positively correlated with fruit sugar content but negatively correlated with anthocyanin content. Transient injection, stable expression [overexpressing and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)], and heterologous transformation of tomato confirmed that MdMYB305 promotes the accumulation of sugar and inhibits the synthesis of anthocyanin.
View Article and Find Full Text PDFSilicon is a beneficial element for plant growth, as well as for improving plant resistance to multiple biotic and abiotic stresses. Gummosis is a common harmful disease in peach and is induced by many factors. However, the effect of silicon on gummosis of peach has not been determined yet.
View Article and Find Full Text PDFWater shortage is a key factor that can restrict peach tree growth. Plants produce fatty acids and the fatty acid derivatives lauric acid (LA) and 12-hydroxylauric acid (LA-OH), which are involved in abiotic stress responses, but the underlying stress response mechanisms remain unclear. In this study, physiological examination revealed that in (L.
View Article and Find Full Text PDFThe oxygen content in the root zone considerably affects the growth and development of peach trees. However, few studies have been conducted on the effects of the oxygen content in the root zones of peach trees on soil microbes and root growth. Four-year-old Ruiguang 33/ (L.
View Article and Find Full Text PDFNitrogen is an important nutrient element that limits plant growth and yield formation, but excessive nitrogen has negative effects on plants and the environment. It is important to reveal the molecular mechanism of high NUE (nitrogen use efficiency) for breeding peach rootstock and variety with high NUE. In this study, two peach rootstocks, Shannong-1 (S) and Maotao (M), with different NUE were used as materials and treated with 0.
View Article and Find Full Text PDFBackground: Drought is one of the main concerns worldwide and restricts the development of agriculture. Silicon improves the drought resistance of plants, but the underlying mechanism remains unclear.
Results: We sequenced the transcriptomes of both control and silicon-treated peach seedlings under drought stress to identify genes or gene networks that could be managed to increase the drought tolerance of peach seedlings.
Silicon (Si) is abundant in nature, and it has been proved to be beneficial for the healthy growth and development of many plant species, improve plant stress resistance. Gummosis in peach is an invasive disease that causes widespread and serious damage. Mechanical damage and ethylene (ETH) can induce gummosis in peach shoots in the field.
View Article and Find Full Text PDFPlants suffer from a variety of environmental stresses during their growth and development. The evolutionarily conserved sucrose nonfermenting kinase 1-related protein kinase 1 (SnRK1) plays a central role in the regulation of energy homeostasis in response to stresses. In plant cells, autophagy is a degradation process occurring during development or under stress, such as nutrient starvation.
View Article and Find Full Text PDFSucrose nonfermenting-1-related protein kinase 1 (SnRK1) is a central integrator of plant stress and energy starvation signalling pathways. We found that the -overexpression (OE) roots had a higher respiratory rate and tolerance to waterlogging than the -RNAi roots, suggesting that plays a positive role in the regulation of anaerobic respiration under waterlogging. upregulated the activity of anaerobic respiration-related enzymes including hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH).
View Article and Find Full Text PDFSucrose nonfermentation 1 (SNF1) related kinase 1 (SnRK1) is a central energy sensor kinase in plants and a key switch regulating carbon and nitrogen metabolism. Fruit quality depends on leaf photosynthetic efficiency and carbohydrate accumulation, but the role of peach (Prunus persica) SnRK1 α subunit (PpSnRK1α) in regulating leaf carbon metabolism and the light signal response remains unclear. We studied the carbon metabolism of tomato leaves overexpressing PpSnRK1α and the responses of PpSnRK1α-overexpressing tomato leaves to light signals.
View Article and Find Full Text PDFIt is very important to promote root growth and delay root and leaf senescence, to improve nitrogen absorption and utilization efficiency, and to improve the storage nutrition level of the tree, so as to improve the fruit quality and yield of peach. In this experiment, we compared and analyzed the effects of traditional fertilization and bag-controlled release fertilizer (BCRF) on the growth of shoots and roots, senescence of leaves and roots, and fruit yield and quality. Moreover, the impacts of BCRF on ammonia volatilization, nitrogen utilization rate, fine root turnover, and plant storage nutrients were also investigated.
View Article and Find Full Text PDF