To test the hypothesis that neuronal growth requires the synthesis and supply of new membrane components to the growing neurite, we have examined the relationship between the synthesis of sphingolipids and the ability of two growth factors, basic fibroblast growth factor (bFGF) and laminin, to stimulate axonal growth in cultured hippocampal neurons. Both bFGF and laminin stimulate axonal growth by approximately fourfold; but the stimulatory effects of both factors can be abolished completely by two inhibitors of sphingolipid synthesis, fumonisin B1 and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol. By using these inhibitors, together with two stereoisomers of short acyl chain derivatives of ceramide, only one of which is metabolized to glucosylceramide, we demonstrate that ongoing synthesis of glucosylceramide, the simplest glycosphingolipid, is a prerequisite for both bFGF and laminin to stimulate axon growth.
View Article and Find Full Text PDFPrevious studies demonstrated that inhibition of sphingolipid synthesis by the mycotoxin fumonisin B1 (FB1) disrupts axonal growth in cultured hippocampal neurons (Harel, R., and Futerman, A. H.
View Article and Find Full Text PDFVarious glycolipid-binding toxins are internalized from the cell surface to the Golgi apparatus. Prominent among these is cholera toxin (CT), which consists of a pentameric B subunit that binds to ganglioside GM1 and an A subunit that mediates toxicity. We now demonstrate that rhodamine (Rh)-CT can be further internalized from the Golgi apparatus to the endoplasmic reticulum (ER) in cultured hippocampal neurons and in neuroblastoma N18TG-2 cells and that the A subunit is essential for retrograde transport to the ER.
View Article and Find Full Text PDFIn order to study the endocytosis of membrane lipids during the development of neuronal polarity, we examined the internalization of a short acyl chain fluorescent derivative of ganglioside GM1, N-(6-(4-nitrobenz-2-oxa-1,3-diazole-7-yl)-aminohexanoyl)-GM1 (C6-NBD-GM1), in hippocampal neurons cultured at low density. C6-NBD-GM1 was internalized by temperature- and energy-dependent mechanisms, and after short times of incubation, accumulated in endosomes in the axon, cell body and dendrites of neurons maintained for up to 4-5 days in culture. C6-NBD-GM1 was subsequently transported in a retrograde direction to a pool of recycling endosomes in the cell body, with little transport to lysosomes, as indicated by the lack of degradation of C6-NBD-GM1 even after long times, and the re-appearance of intact C6-NBD-GM1 at the cell surface after recycling; similarly, little degradation of C6-NBD-GM1 was detected in N18TG-2 neuroblastoma cells.
View Article and Find Full Text PDFChanges in the levels and types of gangliosides occur during neuronal differentiation and development, but no studies have correlated these changes with defined events in neuronal morphogenesis. Here, we have analyzed the relationship between ganglioside synthesis and the development of axons and dendrites in polarized neurons, using hippocampal neurons cultured in such a way that axons and dendrites are generated by a defined sequence of events and in which there is virtually no contamination by glial cells. Neurons were labeled with [4,5-3H]dihydrosphingosine, which was rapidly incorporated into cells and metabolized to 3H-labeled glycosphingolipids.
View Article and Find Full Text PDFTrends Neurosci
April 1996
Recent studies have shown that axonal growth is disrupted by treatments that block the synthesis of membrane components or their delivery by microtubule-based transport. This implies that a continuous supply of newly synthesized membrane components is necessary to sustain growth. In contrast, no clear consensus has yet been achieved about the site of insertion of new membrane components in the membrane of the growing axon, despite the application of new and refined biophysical and molecular techniques to the study of this issue.
View Article and Find Full Text PDFEvidence exists that some newly-synthesized membrane components are inserted into the membrane of the growing axon at the growth cone. We now examine the site of insertion of a glycosylphosphatidylinositol-anchored protein, TAG-1/axonin-1. The protein was cleaved from the plasma membrane by phosphatidylinositol-specific phospholipase C.
View Article and Find Full Text PDFTrends Cell Biol
October 1995
The idea that the transport and sorting of glycosylphosphatidylinositol (GPI)-anchored proteins depends on their interaction with glycosphingolipids was first proposed five or six years ago. Until recently, only circumstantial evidence was available to support this suggestion. During the past year, compelling support for this hypothesis has been provided by observations that inhibition of sphingolipid synthesis reduces the rate of transport of GPI-anchored proteins in yeast, and abolishes the polarized sorting of a GPI-anchored protein in epithelia.
View Article and Find Full Text PDFCholera toxin (CT) consists of a pentameric B subunit which binds with high affinity to ganglioside GM1, and an A subunit which stimulates adenylate cyclase, resulting in the elevation of cAMP. We now examine the effect of cationic amphiphilic drugs (CADs) on the internalization of rhodamine (Rh)-CT in cultured hippocampal neurons. CADs have recently been shown to inhibit receptor recycling by disrupting the assembly-disassembly of clathrin at the plasma membrane and on endosomes (Wang, L.
View Article and Find Full Text PDFSphingolipids, particularly gangliosides, are enriched in neuronal membranes where they have been implicated as mediators of various regulatory events. We recently provided evidence that sphingolipid synthesis is necessary to maintain neuronal growth by demonstrating that in hippocampal neurons, inhibition of ceramide synthesis by Fumonisin B1 (FB1) disrupted axonal outgrowth (Harel, R. and Futerman, A.
View Article and Find Full Text PDFGlucosylceramide, a degradation product of complex glycosphingolipids, is hydrolysed in lysosomes by glucocerebrosidase (GlcCerase). Mutations in the human GlcCerase gene cause a reduction in GlcCerase activity and accumulation of glucosylceramide, which results in the onset of Gaucher disease, the most common lysosomal storage disease. Significant clinical heterogeneity is observed in Gaucher disease, with three main types known, but no clear correlation has been reported between the different types and levels of residual GlcCerase activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 1994
The role of the Golgi apparatus in the motile activity of fibroblasts was examined with brefeldin A (BFA), which disrupts the Golgi apparatus in a variety of cells. Upon incubation with BFA, Swiss mouse 3T3 fibroblasts lost their typical polarized morphology, in which the leading edge is characterized by intensive lamellipodia formation. BFA affected cell asymmetry as demonstrated by a decrease in the morphometric indices, dispersion, and elongation.
View Article and Find Full Text PDFA calcium-dependent ceramide (Cer) kinase was recently detected in human leukemia (HL-60) cells (Kolesnick, R.N., and Hemer, M.
View Article and Find Full Text PDFNeuronal growth is regulated by both extracellular and cellular determinants and is believed to proceed by the addition of new membrane material at the growth cone. To determine whether lipid synthesis is necessary to maintain neuronal growth, we have examined the effect of Fumonisin B1, an inhibitor of ceramide synthesis, on the development of cultured hippocampal neurons. Fumonisin B1 inhibits ceramide synthesis in hippocampal neurons both in vivo and in vitro.
View Article and Find Full Text PDFCeramide, a key intermediate in sphingolipid metabolism, is synthesized by acylation of sphinganine followed by dehydrogenation of dihydroceramide to ceramide. Using radioactive sphinganine, we have examined the site and topology of dihydroceramide synthesis in well-characterized subcellular fractions from rat liver. [4,5-3H]Sphinganine was introduced as a complex with BSA and was metabolized to [4,5-3H]dihydroceramide upon incubation of rat liver homogenates or microsomes with fatty acyl CoA.
View Article and Find Full Text PDFMethods Enzymol
September 1992
An advantage of using N-([1-14C]hexanoyl)sphingolipids to assay sphingolipid metabolism is their ability to rapidly and spontaneously transfer into biological membranes without destroying membrane integrity. This property allows analysis of the activity of enzymes of sphingolipid metabolism under conditions in which the rate of product formation is not limited by availability of substrate, as is often the case with naturally occurring lipids whose rates of spontaneous transfer are extremely slow. Thus, the use of N-([1-14C]hexanoyl)sphingolipids provides an alternative means for studying sphingolipid metabolism in vitro.
View Article and Find Full Text PDFWe examined the intracellular site(s) and topology of glucosylceramide (GlcCer) synthesis in subcellular fractions from rat liver, using radioactive and fluorescent ceramide analogues as precursors, and compared these results with those obtained in our recent study of sphingomyelin (SM) synthesis in rat liver [Futerman, Stieger, Hubbard & Pagano (1990) J. Biol. Chem.
View Article and Find Full Text PDFThe intracellular site of sphingomyelin (SM) synthesis was examined in subcellular fractions from rat liver using a radioactive ceramide analog N-([1-14C]hexanoyl)-D-erythro-sphingosine. This lipid readily transferred from a complex with bovine serum albumin to liver fractions without disrupting the membranes, and was metabolized to radioactive SM. To prevent degradation of the newly synthesized SM to ceramide, all experiments were performed in the presence of EDTA to minimize neutral sphingomyelinase activity and at neutral pH to minimize acid sphingomyelinase activity.
View Article and Find Full Text PDFA dimeric form of acetylcholinesterase from Torpedo californica was purified to homogeneity by affinity chromatography subsequent to solubilization with a phosphatidylinositol-specific phospholipase C of bacterial origin. Bipyramidal crystals of the enzyme were obtained from solutions in polyethylene glycol 200. The crystals diffract to 2.
View Article and Find Full Text PDF