Oxidation of cholesteryl esters in lipoproteins by reactive oxygen species yields cholesteryl ester hydroperoxides (CEOOH). In this study, we developed a novel method for identification and characterization of CEOOH molecules in human lipoproteins by use of reversed-phase liquid chromatography with an hybrid linear ion trap-Orbitrap mass spectrometer (LC-LTQ Orbitrap). Electrospray ionization tandem mass spectrometric analysis was performed in both positive-ion and negative-ion modes.
View Article and Find Full Text PDF1-Palmitoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 16:0/18:2-OOH) and 1-stearoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 18:0/18:2-OOH) were measured by liquid chromatography/mass spectrometry (LC/MS) using nonendogenous 1-palmitoyl-2-heptadecenoylphosphatidylcholine monohydroperoxide as an internal standard. The calibration curves for synthetic PC 16:0/18:2-OOH and PC 18:0/18:2-OOH, which were obtained by direct injection of the internal standard into the LC/MS system, were linear throughout the calibration range (0.8-12.
View Article and Find Full Text PDFUsing an oxygen radical absorbance capacity (ORAC) assay, antioxidant activity was detected in the ethanol extract of the Pacific oyster, which was purified by sequential extraction with organic solvents. The ethyl acetate fraction showed the strongest antioxidant activity and was further purified, yielding a single compound [as assessed by thin-layer chromatography (TLC) and reverse-phase high-performance liquid chromatography (HPLC)]. This compound was identified as 3,5-dihydroxy-4-methoxybenzyl alcohol on the basis of (1)H and (13)C nuclear magnetic resonance (NMR), heteronuclear multiple-bond correlation (HMBC), and electrospray ionization-mass spectrometry (ESI-MS) spectral analyses, a conclusion that was confirmed by chemical synthesis.
View Article and Find Full Text PDF