Purpose: This study aims to assess the diagnostic power of brain asymmetry indices and neuropsychological tests for differentiating mesial temporal lobe epilepsy (MTLE) and schizophrenia (SCZ).
Methods: We studied a total of 39 women including 13 MTLE, 13 SCZ, and 13 healthy individuals (HC). A neuropsychological test battery (NPT) was administered and scored by an experienced neuropsychologist, and NeuroQuant (CorTechs Labs Inc.
Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs.
Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists.
IEEE/ACM Trans Comput Biol Bioinform
December 2021
The aim of this study is to develop a computer-aided diagnosis system with a deep-learning approach for distinguishing "Mild Cognitive Impairment (MCI) due to Alzheimer's Disease (AD)" patients among a list of MCI patients. In this system we are using the power of longitudinal data extracted from magnetic resonance (MR). For this work, a total of 294 MCI patients were selected from the ADNI database.
View Article and Find Full Text PDFBackground And Aim: This study aims to examine the distinguishability of age-related cognitive decline (ARCD) from dementias based on some neurocognitive tests using machine learning.
Materials And Methods: 106 subjects were divided into four groups: ARCD (n=30), probable Alzheimer's disease (AD) (n=20), vascular dementia (VD) (n=21) and amnestic mild cognitive impairment (MCI) (n=35). The following tests were applied to all subjects: The Wechsler memory scale-revised, a clock-drawing, the dual similarities, interpretation of proverbs, word fluency, the Stroop, the Boston naming (BNT), the Benton face recognition, a copying-drawings and Öktem verbal memory processes (Ö-VMPT) tests.
This study aims classification of phosphorus magnetic resonance spectroscopic imaging ((31)P-MRSI) data of human brain tumors using machine-learning algorithms. The metabolite peak intensities and ratios were estimated for brain tumor and healthy (31)P MR spectra acquired at 3T. The spectra were classified based on metabolite characteristics using logistic regression and support vector machine.
View Article and Find Full Text PDF