Publications by authors named "Fusinita van den Ent"

The protein crescentin is required for the crescent shape of the freshwater bacterium (). Crescentin forms a filamentous structure on the inner, concave side of the curved cells. It shares features with eukaryotic intermediate filament (IF) proteins, including the formation of static filaments based on long and parallel coiled coils, the protein's length, structural roles in cell and organelle shape determination and the presence of a coiled coil discontinuity called the "stutter.

View Article and Find Full Text PDF

In most bacteria, cell division relies on the synthesis of new cell wall material by the multiprotein divisome complex. Thus, at the core of the divisome are the transglycosylase FtsW, which synthesises peptidoglycan strands from its substrate Lipid II, and the transpeptidase FtsI that cross-links these strands to form a mesh, shaping and protecting the bacterial cell. The FtsQ-FtsB-FtsL trimeric complex interacts with the FtsWI complex and is involved in regulating its enzymatic activities; however, the structure of this pentameric complex is unknown.

View Article and Find Full Text PDF

A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes.

View Article and Find Full Text PDF

Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures.

View Article and Find Full Text PDF

Bacterial actin MreB is one of the key components of the bacterial cytoskeleton. It assembles into short filaments that lie just underneath the membrane and organize the cell wall synthesis machinery. Here we show that MreB from both T.

View Article and Find Full Text PDF

Bacterial actin homologue MreB is required for cell shape maintenance in most non-spherical bacteria, where it assembles into helical structures just underneath the cytoplasmic membrane. Proper assembly of the actin cytoskeleton requires RodZ, a conserved, bitopic membrane protein that colocalises to MreB and is essential for cell shape determination. Here, we present the first crystal structure of bacterial actin engaged with a natural partner and provide a clear functional significance of the interaction.

View Article and Find Full Text PDF

Bacterial cytokinesis requires the divisome, a complex of proteins that co-ordinates the invagination of the cytoplasmic membrane, inward growth of the peptidoglycan layer and the outer membrane. Assembly of the cell division proteins is tightly regulated and the order of appearance at the future division site is well organized. FtsQ is a highly conserved component of the divisome among bacteria that have a cell wall, where it plays a central role in the assembly of early and late cell division proteins.

View Article and Find Full Text PDF

The bacterial actin homologue MreB forms helical filaments in the cytoplasm of rod-shaped bacteria where it helps maintain the shape of the cell. MreB is co-transcribed with mreC that encodes a bitopic membrane protein with a major periplasmic domain. Like MreB, MreC is localized in a helical pattern and might be involved in the spatial organization of the peptidoglycan synthesis machinery.

View Article and Find Full Text PDF

Restriction-free (RF) cloning provides a simple, universal method to precisely insert a DNA fragment into any desired location within a circular plasmid, independent of restriction sites, ligation, or alterations in either the vector or the gene of interest. The technique uses a PCR fragment encoding a gene of interest as a pair of primers in a linear amplification reaction around a circular plasmid. In contrast to QuickChange site-directed mutagenesis, which introduces single mutations or small insertions/deletions, RF cloning inserts complete genes without the introduction of unwanted extra residues.

View Article and Find Full Text PDF

The YukD protein in Bacillus subtilis was identified in a hidden Markov model (HMM) search as being related in sequence to ubiquitin. By solving the crystal structure we show that YukD adopts a fold that is most closely related to ubiquitin, yet has the shortest C-terminal tail of all known ubiquitin-like proteins. The endogenous gene of yukD in B.

View Article and Find Full Text PDF

The binding of the essential cell division protein FtsN of Escherichia coli to the murein (peptidoglycan) sacculus was studied. Soluble truncated variants of FtsN, including the complete periplasmic part of the protein as well as a variant containing only the C-terminal 77 amino acids, did bind to purified murein sacculi isolated from wild-type cells. FtsN variants lacking this C-terminal region showed reduced or no binding to murein.

View Article and Find Full Text PDF

The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin homologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell.

View Article and Find Full Text PDF

Prokaryotic cell division occurs through the formation of a septum, which in Escherichia coli requires coordination of the invagination of the inner membrane, biosynthesis of peptidoglycan and constriction of the outer membrane. FtsN is an essential cell division protein and forms part of the divisome, a putative complex of proteins located in the cytoplasmic membrane. Structural analyses of FtsN by nuclear magnetic resonance (NMR) reveals an RNP-like fold at the C-terminus (comprising residues 243-319), which has significant sequence homology to a peptidoglycan-binding domain.

View Article and Find Full Text PDF

Structural proteins are now known to be as necessary for controlling cell division and cell shape in prokaryotes as they are in eukaryotes. Bacterial ParM and MreB not only have atomic structures that resemble eukaryotic actin and form similar filaments, but they are also equivalent in function: the assembly of ParM drives intracellular motility and MreB maintains the shape of the cell. FtsZ resembles tubulin in structure and in its dynamic assembly, and is similarly controlled by accessory proteins.

View Article and Find Full Text PDF

X-ray absorption spectroscopy (XAS), including extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) analysis, has been carried out at the Zn K edge of the N-terminal part of the integrase protein of the human immunodeficiency virus, type 2 (HIV-2), and of some zinc coordination compounds. In the presence of excess beta-mercaptoethanol, which was present in the NMR structure elucidation of the protein [Eijkelenboom et al. (1997), Curr.

View Article and Find Full Text PDF

It was the general belief that DNA partitioning in prokaryotes is independent of a cytoskeletal structure, which in eukaryotic cells is indispensable for DNA segregation. Recently, however, immunofluorescence microscopy revealed highly dynamic, filamentous structures along the longitudinal axis of Escherichia coli formed by ParM, a plasmid-encoded protein required for accurate segregation of low-copy-number plasmid R1. We show here that ParM polymerizes into double helical protofilaments with a longitudinal repeat similar to filamentous actin (F-actin) and MreB filaments that maintain the cell shape of non-spherical bacteria.

View Article and Find Full Text PDF