Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge.
View Article and Find Full Text PDFAs CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading.
View Article and Find Full Text PDFUltrashort light pulses induce rapid deformations of crystalline lattices. In ferroelectrics, lattice deformations couple directly to the polarization, which opens the perspective to modulate the electric polarization on an ultrafast time scale. Here, we report on the temporal and spatial tracking of strain and polar modulation in a single-domain BiFeO thin film by ultrashort light pulses.
View Article and Find Full Text PDFMultilayers based on quantum materials (complex oxides, topological insulators, transition-metal dichalcogenides, etc.) have enabled the design of devices that could revolutionize microelectronics and optoelectronics. However, heterostructures incorporating quantum materials from different families remain scarce, while they would immensely broaden the range of possible applications.
View Article and Find Full Text PDFWe report on the formation of topological defects emerging from the cycloidal antiferromagnetic order at the surface of bulk BiFeO_{3} crystals. Combining reciprocal and real-space magnetic imaging techniques, we first observe, in a single ferroelectric domain, the coexistence of antiferromagnetic domains in which the antiferromagnetic cycloid propagates along different wave vectors. We then show that the direction of these wave vectors is not strictly locked to the preferred crystallographic axes as continuous rotations bridge different wave vectors.
View Article and Find Full Text PDFMultiferroics offer an elegant means to implement voltage control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nanomagnonics is expected to eventually lead to the large-scale integration of magnonic devices.
View Article and Find Full Text PDFAfter 50 years of development, the technology of today's electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems needs to be contained. These two factors require the introduction of non-traditional materials and state variables.
View Article and Find Full Text PDFAntiferromagnetic thin films are currently generating considerable excitement for low dissipation magnonics and spintronics. However, while tuneable antiferromagnetic textures form the backbone of functional devices, they are virtually unknown at the submicron scale. Here we image a wide variety of antiferromagnetic spin textures in multiferroic BiFeO thin films that can be tuned by strain and manipulated by electric fields through room-temperature magnetoelectric coupling.
View Article and Find Full Text PDFPhase separation is a cooperative process, the kinetics of which underpin the orderly morphogenesis of domain patterns on mesoscopic scales. Systems of highly degenerate frozen states may exhibit the rare and counterintuitive inverse-symmetry-breaking phenomenon. Proposed a century ago, inverse transitions have been found experimentally in disparate materials, ranging from polymeric and colloidal compounds to high-transition-temperature superconductors, proteins, ultrathin magnetic films, liquid crystals and metallic alloys, with the notable exception of ferroelectric oxides, despite extensive theoretical and experimental work on the latter.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFChirality, a foundational concept throughout science, may arise at ferromagnetic domain walls and in related objects such as skyrmions. However, chiral textures should also exist in other types of ferroic materials, such as antiferromagnets, for which theory predicts that they should move faster for lower power, and ferroelectrics, where they should be extremely small and possess unusual topologies. Here, we report the concomitant observation of antiferromagnetic and electric chiral textures at domain walls in the room-temperature ferroelectric antiferromagnet BiFeO.
View Article and Find Full Text PDFCompetition between coexisting electronic phases in first-order phase transitions can lead to a sharp change in the resistivity as the material is subjected to small variations in the driving parameter, for example, the temperature. One example of this phenomenon is the metal-insulator transition (MIT) in perovskite rare-earth nickelates. In such systems, reducing the transport measurement area to dimensions comparable to the domain size of insulating and metallic phases around the MIT should strongly influence the shape of the resistance-temperature curve.
View Article and Find Full Text PDFAlthough ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems.
View Article and Find Full Text PDFAmong the variety of magnetic textures available in nature, antiferromagnetism is one of the most 'discrete' because of the exact cancellation of its staggered internal magnetization. It is therefore very challenging to probe. However, its insensitivity to external magnetic perturbations, together with the intrinsic sub-picosecond dynamics, make it very appealing for tomorrow's information technologies.
View Article and Find Full Text PDFIn the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity.
View Article and Find Full Text PDFOrganic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current.
View Article and Find Full Text PDFThe control of optical fields is usually achieved through the electro-optic or acousto-optic effect in single-crystal ferroelectric or polar compounds such as LiNbO3 or quartz. In recent years, tremendous progress has been made in ferroelectric oxide thin film technology-a field which is now a strong driving force in areas such as electronics, spintronics and photovoltaics. Here, we apply epitaxial strain engineering to tune the optical response of BiFeO3 thin films, and find a very large variation of the optical index with strain, corresponding to an effective elasto-optic coefficient larger than that of quartz.
View Article and Find Full Text PDFResistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.
View Article and Find Full Text PDFOrganic or molecular spintronics is a rising field of research at the frontier between condensed matter physics and chemistry. It aims to mix spin physics and the richness of chemistry towards designing new properties for spin electronics devices through engineering at the molecular scale. Beyond the expectation of a long spin lifetime, molecules can be also used to tailor the spin polarization of the injected current through the spin-dependent hybridization between molecules and ferromagnetic electrodes.
View Article and Find Full Text PDFThe electric field control of functional properties is a crucial goal in oxide-based electronics. Nonvolatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion from an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects.
View Article and Find Full Text PDFControlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics. Progress has been made in the electrical control of magnetic anisotropy, domain structure, spin polarization or critical temperatures. However, the ability to turn on and off robust ferromagnetism at room temperature and above has remained elusive.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2014
Recently, strain engineering has been shown to be a powerful and flexible means of tailoring the properties of ABO3 perovskite thin films. The effect of epitaxial strain on the structure of the perovskite unit cell can induce a host of interesting effects, these arising from either polar cation shifts or rotation of the oxygen octahedra, or both. In the multi-ferroic perovskite bismuth ferrite (BiFeO3-BFO), both degrees of freedom exist, and thus a complex behaviour may be expected as one plays with epitaxial strain.
View Article and Find Full Text PDFThe electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its "supertetragonal" phase.
View Article and Find Full Text PDF