Publications by authors named "Fushan Li"

Halide perovskites (HPs), emerging as a noteworthy class of semiconductors, hold great promise for an array of optoelectronic applications, including anti-counterfeiting, light-emitting diodes (LEDs), solar cells (SCs), and photodetectors, primarily due to their large absorption cross section, high fluorescence efficiency, tunable emission spectrum within the visible region, and high tolerance for lattice defects, as well as their adaptability for solution-based fabrication processes. Unlike luminescent HPs with band-edge emission, trivalent rare-earth (RE) ions typically emit low-energy light through intra-4f optical transitions, characterized by narrow emission spectra and long emission lifetimes. When fused, the cooperative interactions between HPs and REs endow the resulting binary composites not only with optoelectronic properties inherited from their parent materials but also introduce new attributes unattainable by either component alone.

View Article and Find Full Text PDF

In this study, FeCoNiCrSi (x = 0, 4, and 8) powders were successfully prepared using the aerosol method and employed to produce high-entropy coatings on Q235 steel via laser cladding. The microstructure and phase composition of the coatings were analyzed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Corrosion resistance and potential were evaluated through electrochemical analysis and Kelvin probe force microscopy.

View Article and Find Full Text PDF

Anticounterfeiting technologies meet challenges in the Internet of Things era due to the rapidly growing volume of objects, their frequent connection with humans, and the accelerated advance of counterfeiting/cracking techniques. Here, we, inspired by biological fingerprints, present a simple anticounterfeiting system based on perovskite quantum dot (PQD) fingerprint physical unclonable function (FPUF) by cooperatively utilizing the spontaneous-phase separation of polymers and selective in situ synthesis PQDs as an entropy source. The FPUFs offer red, green, and blue full-color fingerprint identifiers and random three-dimensional (3D) morphology, which extends binary to multivalued encoding by tuning the perovskite and polymer components, enabling a high encoding capacity (about 10, far surpassing that of biometric fingerprints).

View Article and Find Full Text PDF

Colloidal quantum dot (CQD) near-infrared (NIR) upconversion devices (UCDs) can directly convert low-energy NIR light into higher energy visible light without the need for additional integrated circuits, which is advantageous for NIR sensing and imaging. However, the state-of-the-art CQD NIR upconverters still face challenges, including high turn-on voltage (), low photon-to-photon (p-p) upconversion efficiency, and low current on/off ratio, primarily due to inherent limitations in the device structure and operating mechanisms. In this work, we developed a CQD NIR UCD based on a hole-only injection mechanism.

View Article and Find Full Text PDF

Perovskite quantum dots (PQDs) have attracted more and more attention in light-emitting diode (LED) devices due to their outstanding photoelectric properties. Surface ligands not only enable size control of quantum dots but also enhance their optoelectronic performance. However, the efficiency of exciton recombination in PQDs is often hindered by the desorption dynamics of surface ligands, leading to suboptimal electrical performance.

View Article and Find Full Text PDF

The rise of big data and the internet of things has driven the demand for multimodal sensing and high-efficiency low-latency processing. Inspired by the human sensory system, we present a multifunctional optoelectronic-memristor-based reservoir computing (OM-RC) system by utilizing a CuSCN/PbS quantum dots (QDs) heterojunction. The OM-RC system exhibits volatile and nonlinear responses to electrical signals and wide-spectrum optical stimuli covering ultraviolet, visible, and near-infrared (NIR) regions, enabling multitask processing of dynamic signals.

View Article and Find Full Text PDF

With the development of near-eye displays, the demands for display resolution and performance are increasing. Quantum dot performance is virtually independent of pixel size, making it an efficient way to display ultrahigh resolution. However, the low efficiency of high-resolution quantum dot devices has been an urgent technical bottleneck to be solved.

View Article and Find Full Text PDF

Recently, YbCdSb-based Zintl compounds have been widely investigated owing to their extraordinary thermoelectric (TE) performance. However, its p orbitals of anions that determined the valence band structure are split due to crystal field splitting that provides a good platform for band manipulation by doping/alloying and, more importantly, the YbCdSb-based device has yet to be reported. In this work, single-phase YbCdZnSb is successfully obtained through precise chemical composition control.

View Article and Find Full Text PDF

Objective: The mitigation of abdominal aortic aneurysm (AAA) growth through pharmaceutical intervention offers the potential to avert the perils associated with AAA rupture and the subsequent need for surgical intervention. Nevertheless, the existing effective drugs for AAA treatment are limited, necessitating a pressing exploration for novel therapeutic medications.

Methods: AAA-related transcriptome data were downloaded from GEO, and differentially expressed genes (DEGs) in AAA tissue were screened for GO and KEGG enrichment analyses.

View Article and Find Full Text PDF

With the advent of Internet of Things (IoTs) and wearable devices, manufacturing requirements have shifted toward miniaturization, flexibility, environmentalization, and customization. Inkjet printing, as a non-contact picoliter-level droplet printing technology, can achieve material deposition at the microscopic level, helping to achieve high resolution and high precision patterned design. Meanwhile, inkjet printing has the advantages of simple process, high printing efficiency, mask-free digital printing, and direct pattern deposition, and is gradually emerging as a promising technology to meet such new requirements.

View Article and Find Full Text PDF

Accurate prediction of Drug-Target Interactions (DTI) is crucial for drug development. Current state-of-the-art deep learning methods have significantly advanced the field; however, these methods exhibit limitations in predictive performance and the propensity for false negatives. Therefore, we propose EADTN, a simple and efficient ensemble model.

View Article and Find Full Text PDF

With the wide application of electromagnetic waves in national defense, communication, navigation and home appliances, the electromagnetic pollution problem is becoming more and more prominent. Therefore, high-performance, and low-density composite wave-absorbing materials have attracted much attention. In this paper, three-dimensional (3D) network structures of flower-like 1T/2H Molybdenum disulfide nanosheets anchored to carbon fibers (1T/2H MoS/CNFs) were prepared by electrostatic spinning technique and calcination process.

View Article and Find Full Text PDF

With pixel miniaturization, the performance of high-resolution quantum dot light-emitting diodes (QLEDs) usually degrades. Considering the dimension of ultrasmall pixels, herein, a barrier architecture based on localized surface plasmon resonance (LSPR) that promotes the radiative recombination of neighboring quantum dots is rationally designed to improve the device performance. Au nanoparticles (NPs) are embedded in an insulating polymer to form a honeycomb-patterned barrier layer via the nanoimprint process.

View Article and Find Full Text PDF
Article Synopsis
  • - Perovskite nanocrystals are gaining traction in optoelectronics due to their adjustable luminescence, easy manufacturing, and solution processability, but face challenges with stability and performance due to traditional ligands used in quantum dots.
  • - The zwitterion 3-(decyldimethylammonio)propanesulfonate (DLPS) successfully replaces long-chain ligands, reducing defects in perovskite quantum dots through a multi-step post-treatment process.
  • - Using DLPS results in perovskite quantum dots with improved properties, achieving photoluminescence quantum yields of 98%, enhanced stability over 45 days, and leading to high-performance QLEDs with
View Article and Find Full Text PDF

As one of the most commonly used biocidal cationic surfactants, benzalkonium chlorides (BACs) have been an increasing concern as emerging contaminants. Wastewater has been claimed the main point for BACs to enter into the environment, but to date, it is still largely unknown how the BACs affect the microbes (especially microalgae) in the practical wastewater and how to cost-effectively remove them. In this study, the inhibitory effects of a typical BACs, dodecyl dimethyl benzyl ammonium chloride (DDBAC), on a green microalga Chlorella sp.

View Article and Find Full Text PDF
Article Synopsis
  • Quantum dot light-emitting diodes (QLEDs) are gaining popularity for their great light-emitting properties and ability to be manufactured using inkjet printing, but their low resolution limits their use in display applications.
  • Researchers improved QLED resolution to 2540 pixels per inch (PPI) by using electrohydrodynamic (EHD) printing, achieving a maximum external quantum efficiency (EQE) of 20.29% and brightness of 35816 cd/m².
  • The study highlighted that changing the QD layer fabrication process from spin-coating to EHD printing not only enhanced pixelation but also reduced leakage currents, yielding impressive results for potential high-resolution full-color displays.
View Article and Find Full Text PDF

The photolithographic patterning of fine quantum dot (QD) films is of great significance for the construction of QD optoelectronic device arrays. However, the photolithography methods reported so far either introduce insulating photoresist or manipulate the surface ligands of QDs, each of which has negative effects on device performance. Here, we report a direct photolithography strategy without photoresist and without engineering the QD surface ligands.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces highly efficient near-infrared (NIR) luminescent nanophosphors made from copper indium selenide quantum dots (CISe QDs) aimed at improving portable NIR pc-LEDs.
  • The photoluminescence (PL) peak of these quantum dots can be tuned between 750 to 1150 nm, and their quantum yield (QY) significantly increases from 28.6% to 92.8% with a ZnSe shell coating.
  • The resulting NIR pc-LED showcases outstanding photostability and achieves a record-high radiant flux, making it ideal for use in advanced micro-LED applications with resolutions surpassing current commercial displays.
View Article and Find Full Text PDF

Cobalt nickel bimetallic oxides (NiCoO) have received numerous attentions in terms of their controllable morphology, high temperature, corrosion resistance and strong electromagnetic wave (EMW) absorption capability. However, broadening the absorption bandwidth is still a huge challenge for NiCoO-based absorbers. Herein, the unique NiCoO@C core-shell microcubes with hollow structures were fabricated via a facile sacrificial template strategy.

View Article and Find Full Text PDF

Perovskite quantum dot light-emitting diodes (QLEDs) with high color purity and wide color gamut have good application prospects in the next generation of display technology. However, colloidal perovskite quantum dots (PQDs) may introduce a large number of defects during the film-forming process, which is not conducive to the luminous efficiency of the device. Meanwhile, the disordered film formation of PQDs will form interfacial defects and reduce the device performance.

View Article and Find Full Text PDF

Artificial electronic synapses are commonly used to simulate biological synapses to realize various learning functions, regarded as one of the key technologies in the next generation of neurological computation. This work used a simple spin coating technique to fabricate polyimide (PI):graphene quantum dots(GQDs) memristor structure. As a result, the devices exhibit remarkably stable exponentially decaying postsynaptic suppression current over time, as interpreted in the spike-timing-dependent plasticity phenomenon.

View Article and Find Full Text PDF

Nonexponential relaxations are universal characteristics for glassy materials. There is a well-known hypothesis that nonexponential relaxation peaks are composed of a series of exponential events, which have not been verified. In this Letter, we discover the exponential relaxation events during the recovery process using a high-precision nanocalorimetry, which are universal for metallic glasses and organic glasses.

View Article and Find Full Text PDF

Quantum dot light-emitting diodes (QLEDs), owing to their exceptional performances in device efficiency, color purity/tunability in the visible region and solution-processing ability on various substrates, become a potential candidate for flexible and ultrathin electroluminescent (EL) lighting and display. Moreover, beyond the lighting and display, flexible QLEDs are enabled with endless possibilities in the era of the internet of things and artificial intelligence by acting as input/output ports in wearable integrated systems. Challenges remain in the development of flexible QLEDs with the goals for high performance, excellent flexibility/even stretchability, and emerging applications.

View Article and Find Full Text PDF

The tanglesome allocation of landscape types at various spatial dimensions is an important component influencing the quality of groundwater environment in karst cities. Trace elements can be used as indicators of the extent of impact on groundwater which is an effective means of tracing groundwater contamination. In this study, we studied the influence of landscape patterns on trace elements in groundwater of typical karst cities in Southwest China (Guiyang City) on a multi-spatial scale by using multivariate statistical analysis.

View Article and Find Full Text PDF

Thermoelectric refrigeration is one of the mature techniques used for cooling applications, with the great advantage of miniaturization over traditional compression refrigeration. Due to the anisotropic thermoelectric properties of n-type bismuth telluride (Bi Te ) alloys, these two common methods, including the liquid phase hot deformation (LPHD) and traditional hot forging (HF) methods, are of considerable importance for texture engineering to enhance performance. However, their effects on thermoelectric and mechanical properties are still controversial and not clear yet.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionckq81nvrddabma7qrk3r26qep2cl4488): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once