Publications by authors named "Fusek J"

Objectives: In this work, we hypothesized whether galantamine could interact with the cholinergic anti-inflammatory pathway and modulate immunity this way.

Background: Galantamine is a drug used for the therapy of Alzheimer disease. The drug inhibits enzyme acetylcholinesterase in the central nervous system, which causes better availability of neurotransmitter acetylcholine.

View Article and Find Full Text PDF

Freund´s complete adjuvant (FCA) is a mean used for improving immunization efficacy in experiments and veterinary medicine. Despite high efficacy, it is not used in human vaccination due to number of adverse effects. Arthritis can be an example of a typical adverse consequence.

View Article and Find Full Text PDF

The worldwide prevalence of obesity more than doubled between 1980 and 2014. The obesity pandemic is tightly linked to an increase in energy availability, sedentariness and greater control of ambient temperature that have paralleled the socioeconomic development of the past decades. The most frequent cause which leads to the obesity development is a dysbalance between energy intake and energy expenditure.

View Article and Find Full Text PDF

Two non-symmetric bispyridine oxime - based reactivators of acetylcholinesterase enzyme (AChE), labeled as K027 (1-(4-carbamoylpyridinium)-3-(4-hydroxyiminomethylpyridinium)-propane dibromide) and K203 ((E)-1-(4- carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide) were tested for their potential to inhibit activities of human liver microsomal cytochromes P450 (CYP). Both oximes are very potent reactivators of organophosphate-inhibited AChE. An interaction of both compounds with CYP in human liver microsomal preparation was detected using difference spectroscopy.

View Article and Find Full Text PDF

Melatonin is a hormone with strong antioxidant properties. In this experiment, Freund's complete adjuvant was used as a stressogenic substance given to laboratory outbred mice, whereas melatonin was investigated as a protectant against the stressogenic effect. Levels of low molecular weight antioxidants, thiobarbituric acid reactive substances, and tumor necrosis factor α and activity of glutathione reductase were determined in blood from the animals.

View Article and Find Full Text PDF

Reactivation effects of K203 and currently available oximes (obidoxime, HI-6) in combination with atropine on acetylcholinesterase activities in the brain parts of rats poisoned with tabun were studied. The activity was determined by quantitative histochemical and biochemical methods correlating between them very well. The tabun-induced changes in acetylcholinsterase activity as well as in reactivation potency of reactivators used were different in various parts of the brain.

View Article and Find Full Text PDF

The antidotal treatment of organophosphorus poisoning is still a problematic issue since no versatile antidote has been developed yet. In our study, we focused on an interesting property, which does not relate to the reactivation of inhibited acetylcholinesterase (AChE) of some oximes, but refers to their anti-muscarinic effects which may contribute considerably to their treatment efficacy. One standard reactivator (HI-6) and two new compounds (K027 and K203) have been investigated for their antimuscarinic properties.

View Article and Find Full Text PDF

Current treatment of organophosphorus poisoning, resulting in overstimulation and desensitization of muscarinic and nicotinic receptors by acetylcholine (ACh), consists of the administration of atropine and oxime reactivators. However, no versatile oxime reactivator has been developed yet and some mortality still remains after application of standard atropine treatment, probably due to its lack of antinicotinic action. In our study, we focused on the interesting non-acetylcholinesterase property of oximes, i.

View Article and Find Full Text PDF

Macrophages play an important role in the immune system. They also participate in multiple processes including angiogenesis and triggering of inflammation. The present study summarizes pieces of knowledge on the importance of macrophages in disease, especially the inflammation.

View Article and Find Full Text PDF

Tabun belongs to the most toxic nerve agents. Its mechanism of action is based on acetylcholinesterase (AChE) inhibition at the peripheral and central nervous systems. Therapeutic countermeasures comprise administration of atropine with cholinesterase reactivators able to reactivate the inhibited enzyme.

View Article and Find Full Text PDF

The oxime reactivator K112 is a member of the new group of xylene linker-containing AChE reactivators. Its cholinergic properties could be of importance at OP poisoning and are not related to the AChE reactivation that has been studied. It has been found that, despite of reactivating potency, this compound has additional effects.

View Article and Find Full Text PDF

Obidoxime, a well-known bis-pyridinium reactivator, is often the preferred antidote of organophosphorus poisoning caused by pesticides and tabun. It is also considered to be an allosteric modulator of muscarinic receptors, preferably M2 sub-type. This study compared the effect of obidoxime and atropine in vivo and in vitro on the cholinergic stimulation of the rat heart (M2) and the urinary bladder (M3).

View Article and Find Full Text PDF

The poisoning with organophosphorus compounds represents a life threatening danger especially in the time of terroristic menace. No universal antidote has been developed yet and other therapeutic approaches not related to reactivation of acetylcholinesterase are being investigated. This review describes the main features of the cholinergic system, cholinergic receptors, cholinesterases and their inhibitors.

View Article and Find Full Text PDF

Up to now, intensive attempts to synthesize a universal reactivator able to reactivate cholinesterases inhibited by all types of nerve agents/organophosphates were not successful. Therefore, another approach using a combination of two reactivators differently reactivating enzyme was used: in rats poisoned with tabun and treated with combination of atropine (fixed dose) and different doses of trimedoxime and HI-6, changes of acetylcholinesterase activities (blood, diaphragm and different parts of the brain) were studied. An increase of AChE activity was observed following trimedoxime treatment depending on its dose; HI-6 had very low effect.

View Article and Find Full Text PDF

Prophylactic approaches against intoxication with organophosphates (OP)/nerve agents can be based on following principles: keeping acetylcholinesterase (AChE), the key enzyme for toxic action of OP/nerve agents, intact (protection of cholinesterases) is a basic requirement for effective prophylaxis. It can be reached using simple chemicals such as reversible inhibitors (preferably carbamates), which are able to inhibit AChE reversibly. AChE inhibited by carbamates is resistant to OP/nerve agent inhibition.

View Article and Find Full Text PDF

10-Methylacridinium iodide (methylacridinium; MA) is an inhibitor of cholinesterases. Inhibitors of acetylcholinesterase (AChE) are used in the treatment of myasthenia gravis, Alzheimer's disease, and in the prophylaxis of poisoning with organophosphates. Using spectrophotometric Ellman's method at 436 nm and commercial enzymes we found that MA inhibits AChE by binding with relatively high potency to the peripheral anionic site (IC(50) = 1.

View Article and Find Full Text PDF

Substances K-48 and HI-6, oxime-type acetylcholinesterase (AChE) reactivators, were tested for their potential to inhibit the activities of human liver microsomal cytochromes P450 (CYP). The compounds were shown to bind to microsomal cytochromes P450 with spectral binding constants of 0.25+/-0.

View Article and Find Full Text PDF

Differences between acetylcholinesterase (AChE) inhibition in the brain structures following VX and RVX exposure are not known as well as information on the possible correlation of biochemical and histochemical methods detecting AChE activity. Therefore, inhibition of AChE in different brain parts detected by histochemical and biochemical techniques was compared in rats intoxicated with VX and RVX. AChE activities in defined brain regions 30 min after treating rats with VX and Russian VX intramuscularly (1.

View Article and Find Full Text PDF

Objectives: The current standard treatment of organophosphate poisoning consists of an administration of anticholinergic drugs and cholinesterase reactivators (oximes). Oximes can react - except their reactivating effect on cholinesterases - directly with cholinoreceptors. HI-6 is an oxime that may have an inhibitory effect on the muscarinic receptors, too.

View Article and Find Full Text PDF

Understanding the mechanism of action of organophosphates (OP)/nerve agents -- irreversible acetylcholinesterase (AChE, EC 3.1.1.

View Article and Find Full Text PDF

After sarin inhalation exposure of rats pretreated with equine serum butyrylcholinesterase (EqBuChE), cholinesterase activities of the whole blood, acetylcholinesterase (AChE) in erythrocytes, pontomedullar area, frontal cortex, and striatum of the brain, and plasma butyrylcholinesterase (BuChE) were determined. Using different doses of EqBuChE as a pretreatment (intraperitoneal injection), dose-dependent increases in plasma BuChE activity and no changes in the erythrocyte and brain AChE activities were demonstrated. Decreases in plasma BuChE activity and red blood cells (RBC) and brain AChE activities were observed in control rats after sarin inhalation exposure without EqBuChE pretreatment.

View Article and Find Full Text PDF

Basic part of the current standard treatment of organophosphate (OP) agent poisoning is administration of cholinesterase reactivators. It includes different types of oximes with a similar basic structure differing by the number of pyridinium rings and by the position of the oxime group in the pyridinium ring. Oximes hydrolytically cleave the organophosphates from acetylcholinesterase (AChE), restoring enzymatic function.

View Article and Find Full Text PDF

Nerve agents can be divided into G-agents (sarin, soman, tabun, cyclosarin etc.) and V-agents. The studies dealing with V-agents (O-alkyl S-2-dialkylaminoethyl methyl phosphonothiolates) are limited to one or two representatives only (VX, Russian VX).

View Article and Find Full Text PDF

Protection experiments were conducted using different doses of equine serum butyrylcholinesterase (Eq BuChE) as pretreatment in rats. Cholinesterase activities were determined in blood [whole blood, red blood cells (RBC) acetylcholinesterase (AChE), and plasma BuChE] before and after sarin inhalation exposure in untreated rats and those pretreated with Eq BuChE. Brain AChE activity was also determined in the frontal cortex, basal ganglia and pontomedullar areas following exposure.

View Article and Find Full Text PDF