Publications by authors named "Fusao Takusagawa"

An x-ray study indicated that microsomal prostaglandin E synthase type 2 (mPGES2) is a heme-bound protein and catalyzes prostaglandin (PG) H2 degradation, but not PGE2 formation (Yamada, T., and Takusagawa, F. (2007) Biochemistry 46, 8414-8424).

View Article and Find Full Text PDF

S-adenosylmethionine (AdoMet) lies at an intersection of nucleotide and amino acid metabolism and performs a multitude of metabolic functions. AdoMet formation is catalyzed by S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase (MAT)), which is a target for development of anticancer and antimicrobial agents. High affinity MAT inhibitors have been found through computational docking of more than 200000 compounds for predicted binding to the crystallographically defined nucleotide binding region of the enzyme's active site.

View Article and Find Full Text PDF

Catalysis by S-adenosylmethionine synthetase has been investigated by quantum mechanical/molecular mechanical calculations, exploiting structures of the active crystalline enzyme. The transition state energy of +19.1 kcal/mol computed for a nucleophilic attack of the methionyl sulfur on carbon-5' of the nucleotide was indistinguishable from the experimental (solution) value when the QM residues were an uncharged histidine that hydrogen bonds to the leaving oxygen-5' and an aspartate that chelates a Mg2+ ion, and was similar (+18.

View Article and Find Full Text PDF

Adenosylhomocysteine hydrolase (SAHase)-like protein 1 (SAH-L), also called inositol 1,4,5-triphosphate receptor-binding protein (IRBIT) is a novel protein involved in fish embryo development and calcium release in mammalian cells through protein-protein interactions. To better understand its reaction mechanism, purified protein is indispensable. Here we describe a simple purification procedure and the unique properties of SAH-L.

View Article and Find Full Text PDF

Prostaglandin E2 synthase (PGES) catalyzes the isomerization of PGH2 to PGE2. PGES type 2 (mPGES-2) is a membrane-associated enzyme, whose N-terminal section is apparently inserted into the lipid bilayer. Both intact and N-terminal truncated enzymes have been isolated and have similar catalytic activity.

View Article and Find Full Text PDF

d-Eritadenine (DEA) is a potent inhibitor of S-adenosyl-l-homocysteine hydrolase (SAHH) and has hypocholesterolemic activity. We have hypothesized that 3-deaza-DEA (C3-DEA) and its analogues retain high level of SAHH inhibitory activity and have resistance to deamination and glycosidic bond hydrolysis in vivo. Such C3-DEA analogues would have much higher hypocholesterolemic activity.

View Article and Find Full Text PDF

A cDNA clone similar to human serine dehydratase (SDH) is deposited in the GenBank/EMBL databases, but its structural and functional bases remain unknown. Despite the occurrence of mRNA, the expected protein level was found to be low in cultured cells. To learn about physicochemical properties of the protein, we expressed the cDNA in Escherichia coli, and compared the expressed protein with that of a hepatic SDH.

View Article and Find Full Text PDF

Prostaglandin H(2) (PGH(2)) formed from arachidonic acid is an unstable intermediate and is efficiently converted into more stable arachidonate metabolites by the action of enzymes. Prostaglandin F synthase (PGFS) has dual catalytic activities: formation of PGF(2)(alpha) from PGH(2) by the PGH(2) 9,11-endoperoxide reductase activity and 9alpha,11beta-PGF(2) (PGF(2)(alphabeta)) from PGD(2) by the PGD(2) 11-ketoreductase activity in the presence of NADPH. Bimatoprost (BMP), which is a highly effective ocular hypotensive agent, is a PGF(2)(alpha) analogue that inhibits both the PGD(2) 11-ketoreductase and PGH(2) 9,11-endoperoxide reductase activities of PGFS.

View Article and Find Full Text PDF

Cytolethal distending toxin (CDT) secreted by Actinobacillus actinomycetemcomitans induces cell cycle arrest of cultured cells in the G2 phase. The crystal structure of the natural form of A. actinomycetemcomitans DCT (aCDT) has been determined at 2.

View Article and Find Full Text PDF

S-adenosylhomocysteine hydrolase (AdoHcyase) catalyzes the hydrolysis of S-adenosylhomocysteine (AdoHcy) to form adenosine and homocysteine. The crystal structure of the K185N mutated enzyme, which has weak catalytic activity (0.1%), has been determined at 2.

View Article and Find Full Text PDF

Prostaglandin (PG) H(2) (PGH(2)), formed from arachidonic acid, is an unstable intermediate and is converted efficiently into more stable arachidonate metabolites (PGD(2), PGE(2), and PGF(2)) by the action of three groups of enzymes. Prostaglandin E synthase catalyzes an isomerization reaction, PGH(2) to PGE(2). Microsomal prostaglandin E synthase type-2 (mPGES-2) has been crystallized with an anti-inflammatory drug indomethacin (IMN), and the complex structure has been determined at 2.

View Article and Find Full Text PDF

In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, we purified recombinant enzyme from Escherichia coli, and compared some properties between human and rat liver serine dehydratases. Edman degradation showed that the N-terminal sequence of about 75% of human serine dehydratase starts from MetSTART-Met2-Ser3- and the rest from Ser3-, whereas the N-terminus of rat enzyme begins from the second codon of MetSTART-Ala2-.

View Article and Find Full Text PDF

Guanidinoacetate methyltransferase (GAMT) is the enzyme that catalyzes the last step of creatine biosynthesis. The enzyme is found in abundance in the livers of all vertebrates. The intact GAMT from recombinant rat liver has been crystallized with an inhibitor S-adenosylhomocysteine (SAH) and a substrate guanidinoacetate (GAA), and with SAH and an inhibitor guanidine (GUN).

View Article and Find Full Text PDF

Prostaglandin H(2) (PGH(2)) formed from arachidonic acid is an unstable intermediate and is efficiently converted into more stable arachidonate metabolites (PGD(2), PGE(2), and PGF(2)) by the action of three groups of enzymes. Prostaglandin F synthase (PGFS) was first purified from bovine lung and catalyzes the formation of 9 alpha,11 beta-PGF(2) from PGD(2) and PGF(2)(alpha) from PGH(2) in the presence of NADPH. Human PGFS is 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) type II and has PGFS activity and 3 alpha-HSD activity.

View Article and Find Full Text PDF

S-Adenosylmethionine synthetase (MAT) catalyzes formation of S-adenosylmethionine (SAM) from ATP and l-methionine (Met) and hydrolysis of tripolyphosphate to PP(i) and P(i). Escherichia coli MAT (eMAT) has been crystallized with the ATP analogue AMPPNP and Met, and the crystal structure has been determined at 2.5 A resolution.

View Article and Find Full Text PDF

Guanidinoacetate methyltransferase (GAMT) is the enzyme that catalyzes the last step of creatine biosynthesis. The enzyme is found in abundance in the livers of all vertebrates. Recombinant rat liver GAMT truncated at amino acid 37 from the N-terminus has been crystallized with S-adenosylhomocysteine (SAH) in a monoclinic modification and the crystal structure has been determined at 2.

View Article and Find Full Text PDF

Methyltransfer reactions are some of the most important reactions in biological systems. Glycine N-methyltransferase (GNMT) catalyzes the S-adenosyl-l-methionine- (SAM-) dependent methylation of glycine to form sarcosine. Unlike most SAM-dependent methyltransferases, GNMT has a relatively high value and is weakly inhibited by the product S-adenosyl-l-homocysteine (SAH).

View Article and Find Full Text PDF

Serine dehydratase (SDH) is abundant in the rat liver but scarce in the kidney. When administrated with dexamethasone, the renal SDH activity was augmented 20-fold, whereas the hepatic SDH activity was affected little. In situ hybridization and immunohistochemistry revealed that SDH was localized to the proximal straight tubule of the nephron.

View Article and Find Full Text PDF

Crystallographic studies of Escherichia coli S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase, MAT) have defined a flexible polypeptide loop that can gate access to the active site without contacting the substrates. The influence of the length and sequence of this active site loop on catalytic efficiency has been characterized in a mutant in which the E. coli MAT sequence (DRADPLEQ) has been replaced with the distinct sequence of the corresponding region of the otherwise highly homologous rat liver enzyme (HDLRNEEDV).

View Article and Find Full Text PDF

Guanidinoacetate methyltransferase (GAMT) is the enzyme that catalyzes the last step of creatine biosynthesis. The enzyme is found in abundance in the livers of all vertebrates. Recombinant rat liver GAMT has been crystallized with S-adenosylhomocysteine (SAH), and the crystal structure has been determined at 2.

View Article and Find Full Text PDF

S-Adenosylhomocysteine hydrolase (AdoHcyase) catalyzes the hydrolysis of S-adenosylhomocysteine to form adenosine and homocysteine. On the bases of crystal structures of the wild type enzyme and the D244E mutated enzyme complexed with 3'-keto-adenosine (D244E.Ado*), we have identified the important amino acid residues, Asp-130, Lys-185, Asp-189, and Asn-190, for the catalytic reaction and have proposed a catalytic mechanism (Komoto, J.

View Article and Find Full Text PDF

Rat liver serine dehydratase (SDH) is known to be involved in gluconeogenesis. It has long been believed to be a dimeric protein with the subunit molecular weight (M(r)) of 34,000. Recently, sheep liver SDH was reported to be a monomer with a M(r) of 38,000.

View Article and Find Full Text PDF