Publications by authors named "Fusang Liu"

Crop yield potential is intrinsically related to canopy photosynthesis; therefore, improving canopy photosynthetic efficiency is a major focus of current efforts to enhance crop yield. Canopy photosynthesis rate () is influenced by several factors, including plant architecture, leaf chlorophyll content, and leaf photosynthetic properties, which interact with each other. Identifying factors that restrict canopy photosynthesis and target adjustments to improve canopy photosynthesis in a specific crop cultivar pose an important challenge for the breeding community.

View Article and Find Full Text PDF

Leaf angle and leaf area index together influence canopy light interception and canopy photosynthesis. However, so far, there is no effective method to identify the optimal combination of these two parameters for canopy photosynthesis. In this study, first a robust high-throughput method for accurate segmentation of maize organs based on 3D point clouds data was developed, then the segmented plant organs were used to generate new 3D point clouds for the canopy of altered architectures.

View Article and Find Full Text PDF

Background And Aims: Light interception is closely related to canopy architecture. Few studies based on multi-view photography have been conducted in a field environment, particularly studies that link 3-D plant architecture with a radiation model to quantify the dynamic canopy light interception. In this study, we combined realistic 3-D plant architecture with a radiation model to quantify and evaluate the effect of differences in planting patterns and row orientations on canopy light interception.

View Article and Find Full Text PDF