Publications by authors named "Furu Mienis"

Coral reefs are iconic ecosystems that support diverse, productive communities in both shallow and deep waters. However, our incomplete knowledge of cold-water coral (CWC) niche space limits our understanding of their distribution and precludes a complete accounting of the ecosystem services they provide. Here, we present the results of recent surveys of the CWC mound province on the Blake Plateau off the U.

View Article and Find Full Text PDF

Cold-water coral (CWC) reefs of the Angolan margin (SE Atlantic) are dominated by Desmophyllum pertusum and support a diverse community of associated fauna, despite hypoxic conditions. In this study, we use carbon and nitrogen stable isotope analyses (δC and δN) to decipher the trophic network of this relatively unknown CWC province. Although fresh phytodetritus is available to the reef, δN signatures indicate that CWCs (12.

View Article and Find Full Text PDF

The deep sea is amongst the most food-limited habitats on Earth, as only a small fraction (<4%) of the surface primary production is exported below 200 m water depth. Here, cold-water coral (CWC) reefs form oases of life: their biodiversity compares with tropical coral reefs, their biomass and metabolic activity exceed other deep-sea ecosystems by far. We critically assess the paradox of thriving CWC reefs in the food-limited deep sea, by reviewing the literature and open-access data on CWC habitats.

View Article and Find Full Text PDF
Article Synopsis
  • Cold-water coral reefs are rich in biodiversity, but there is limited understanding of how they develop in terms of morphology and the driving processes behind it.
  • A two-month study using flume experiments found that unidirectional water flow impacts coral growth and stress levels in Lophelia pertusa, with corals on the upstream side growing better due to higher current speeds and better food and ion intake.
  • The research indicates that local water flow conditions influence the morphology of coral reefs as they tend to grow towards the current, suggesting that coral distributions are a result of spatial self-organization influenced by hydrodynamic factors.
View Article and Find Full Text PDF

In the deep ocean symbioses between microbes and invertebrates are emerging as key drivers of ecosystem health and services. We present a large-scale analysis of microbial diversity in deep-sea sponges (Porifera) from scales of sponge individuals to ocean basins, covering 52 locations, 1077 host individuals translating into 169 sponge species (including understudied glass sponges), and 469 reference samples, collected anew during 21 ship-based expeditions. We demonstrate the impacts of the sponge microbial abundance status, geographic distance, sponge phylogeny, and the physical-biogeochemical environment as drivers of microbiome composition, in descending order of relevance.

View Article and Find Full Text PDF

Sponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as high microbial abundance (HMA) species. Geodia hentscheli, G.

View Article and Find Full Text PDF

The turbulence regime near the crest of a biologically rich seamount of the Mid-Atlantic Ridge southwest of the Azores was registered in high spatial and temporal resolution. Internal tides and their higher harmonics dominate the internal wave motions, producing considerable shear-induced turbulent mixing in layers of 10-50 m thickness. This interior mixing of about 100 times open-ocean interior values is observed both at a high-resolution temperature sensor mooring-site at the crest, 770 m water depth being nearly 400 m below the top of the seamount, and a CTD-yoyo site at the slope off the crest 400 m horizontally away, 880 m water depth.

View Article and Find Full Text PDF