Publications by authors named "Furong Ju"

Article Synopsis
  • Scientists found that special marks on DNA can control how genes are turned on and off.
  • They made a new method called Chrom-seq to find RNA that works with these DNA marks in living cells.
  • This new method is better, faster, and cheaper than older ways and doesn’t need special antibodies to study RNA linked to DNA marks that might help control gene activity.
View Article and Find Full Text PDF

Endoplasmic reticulum (ER) is the largest membrane-bound compartment in all cells and functions as a key regulator in protein biosynthesis, lipid metabolism, and calcium balance. Mammalian endoplasmic reticulum has evolved with an orchestrated protein quality control system to handle defective proteins and ensure endoplasmic reticulum homeostasis. Nevertheless, the accumulation and aggregation of misfolded proteins in the endoplasmic reticulum may occur during pathological conditions.

View Article and Find Full Text PDF

Microglia are primary immune cells within the brain and are rapidly activated after cerebral ischemia. The degree of microglial activation is closely associated with the severity of ischemia. However, it remains largely unclear how microglial activation is differentially regulated in response to a different degree of ischemia.

View Article and Find Full Text PDF

Understanding the connection between brain and behavior in animals requires precise monitoring of their behaviors in three-dimensional (3-D) space. However, there is no available three-dimensional behavior capture system that focuses on rodents. Here, we present MouseVenue3D, an automated and low-cost system for the efficient capture of 3-D skeleton trajectories in markerless rodents.

View Article and Find Full Text PDF

Ischemic stroke can induce rapid activation of the microglia. It has been reported that the microglia's survival is dependent on colony-stimulating factor 1 receptor (CSF1R) signaling and that pharmacological inhibition of CSF1R leads to morphological changes in the microglia in the healthy brain. However, the impact of CSF1R inhibition on neuronal structures and motor ability after ischemia-reperfusion remains unclear.

View Article and Find Full Text PDF

Ischemic stroke can induce rapid disruption of blood-brain barrier (BBB). It has been suggested that increased BBB permeability can affect the pathological progression of ischemic tissue. However, the impact of increased BBB permeability on microglial activation and synaptic structures following reperfusion after ischemia remains unclear.

View Article and Find Full Text PDF

The dissacharide trehalose is an important intracellular osmoprotectant and the OtsA/B pathway is the principal pathway for trehalose biosynthesis in a wide range of bacterial species. Scaffolding proteins and other cytoskeletal elements play an essential role in morphogenetic processes in bacteria. Here we describe how OtsA, in addition to its role in trehalose biosynthesis, functions as an osmotic stress sensor to regulate cell morphology in Arthrobacter strain A3.

View Article and Find Full Text PDF

Microglia are immune cells in the brain and play a pivotal role in the progression of ischemic injury, but the gene expression and signaling pathways related to the activation of microglia following ischemia remain unclear. In our experiment, we used digital gene expression (DGE) analysis to profile the transcriptome of ischemic tissue in a photothrombosis model. DGE analysis identified that a total of 749 genes were differentially regulated (643 up-regulated and 106 down-regulated) after 2days and 7days following stroke.

View Article and Find Full Text PDF

Progesterone (PG) as a neuroprotective reagent has been used for the treatment of spinal cord injury (SCI) in experimental animal models. However, its effect and mechanism on axonal dieback at the early stage of SCI remain unclear. Here, we investigate the dynamics of injured axons and the effect of PG on the axonal dieback, glial response, and behavioral recovery in a mouse model of SCI.

View Article and Find Full Text PDF

It has been observed by in vivo imaging that damaged neuronal structures can be reversibly restored after ischemic insults with the application of timely therapeutic interventions. However, what degree of neuronal damage can be restored and the time frame for reversible recovery of neuronal structures remain unclear. Here, transcranial two-photon imaging, histological staining and electron microscopy were used to investigate the reversible recovery of neuronal structures from dendrites to soma after different durations of global cerebral ischemia in mice.

View Article and Find Full Text PDF

Ischemia can cause rapid neuronal damage. Previous studies have suggested that synaptic structures and cortical functions can be rescued if therapeutic interventions are applied in time, but the structural basis for this resilience remains incompletely understood. Here, we investigated the restoration of synaptic structures and postischemic plasticity of dendritic spines in the somatosensory cortices of mice by taking advantage of a reversible global cerebral ischemia model.

View Article and Find Full Text PDF

Context And Objective: Paraoxon (POX) is one of the most toxic organophosphorus pesticides, but its toxic mechanisms associated with apoptosis remain unclear. The aim of this study was to investigate calcium-associated mechanisms in POX-induced apoptosis in EL4 cells.

Materials And Methods: EL4 cells were exposed to POX for 0-16 h.

View Article and Find Full Text PDF

Stroke is considered as the second leading cause of death worldwide. The survivors of stroke experience different levels of impairment in brain function resulting in debilitating disabilities. Current therapies for stroke are primarily palliative and may be effective in only a small population of stroke patients.

View Article and Find Full Text PDF

Ischemic stroke is caused when blood flow to the brain is stopped and is a major cause of death and long term disability across the globe. Excessive release of neurotransmitters is triggered in the brain by ischemia that mediates neuronal damage and causes ischemic injury. In this study, a simple, sensitive, and on-line preconcentration capillary electrophoresis method based on electrokinetic supercharging (EKS) was developed for the determination of the biogenic amines including dopamine (DA), epinephrine (E), and norepinephrine (NE) in C57BL/6 mice brain.

View Article and Find Full Text PDF

Severe spinal cord injury (SCI) can cause neurological dysfunction and paralysis. However, the early dynamic changes of neurons and their surrounding environment after SCI are poorly understood. Although methylprednisolone (MP) is currently the standard therapeutic agent for treating SCI, its efficacy remains controversial.

View Article and Find Full Text PDF

Background: As an essential protein for bacterial cell division, the tubulin-like FtsZ protein has been selected as a target for development of next generation antimicrobials. PC190723 is a fluoride-containing benzamide compound developed as a FtsZ inhibitor that selectively inhibits growth of multidrug resistant Gram-positive bacteria.

Aim: Our aim was to investigate the mechanism of resistance to PC109723 conferred by over-expression of a gene, rfiA, in an environmental bacterium Arthrobacter A3.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to explore the use of two-photon microscopy for investigating the therapeutic time window of methylprednisolone (MP) treatment after spinal cord injury (SCI).

Methods: Twenty-four YFP H-line mice were subjected to hemisection SCI and then divided into four groups. Group 1 received MP at 30 min post-injury; group 2 received MP at 8 h post-injury; group 3 received MP at 24 h post-injury; and group 4 received saline at 30 min post-injury.

View Article and Find Full Text PDF

Purpose: Exploration of the relationship between a novel paired box 6 (Pax6) mutant and Pax6 in Bufo raddei Strauch.

Methods: RT-PCR, yeast 2-hybrid system, and co-immunoprecipitation were used to analyze the Pax6 protein and its mutant during embryonic eye development in Bufo raddei Strauch.

Results: We have cloned the Pax6 ORF sequence from Bufo raddei Strauch.

View Article and Find Full Text PDF

Purpose: To explore the expression of the lens crystallins (αA- and βB1-crystallin) in Xenopus laevis embryonic lens development and regeneration and to analyze the order of different crystallins generated in the regenerating lens.

Methods: Real Time-PCR, Immunofluorescence, and 2D-PAGE were used to analyze the expressions of αA-crystallin and βB1-crystallin, and related factors during embryonic lens development and regeneration in Xenopus laevis.

Results: αA-crystallin and βB1-crystallin were first detected at stage 29/30 during normal development, and the two crystallins were simultaneously detected in regeneration.

View Article and Find Full Text PDF