The aryl hydrocarbon receptor (AhR) is a highly conserved cellular sensor of a variety of environmental pollutants and dietary-, cell- and microbiota-derived metabolites with important roles in fundamental biological processes. Deregulation of the AhR pathway is implicated in several diseases, including autoimmune diseases and cancer, rendering AhR a promising target for drug development and host-directed therapy. The pharmacological intervention of AhR processes requires detailed information about the ligand binding properties to allow specific targeting of a particular signaling process without affecting the remaining.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFrapidly adapts to altered conditions by quorum sensing (QS), a communication system that it uses to collectively modify its behavior through the production, release, and detection of signaling molecules. QS molecules can also be sensed by hosts, although the respective receptors and signaling pathways are poorly understood. We describe a pattern of regulation in the host by the aryl hydrocarbon receptor (AhR) that is critically dependent on qualitative and quantitative sensing of quorum.
View Article and Find Full Text PDFThe large TSH-bound ectodomain of the thyrotropin receptor (TSHR) activates the transmembrane domain (TMD) indirectly via an internal agonist (IA). The ectodomain/TMD interface consists of a converging helix, a Cys-Cys-bridge-linked IA, and extracellular loops (ECL). To investigate the intramolecular course of molecular activation, especially details of the indirect activation, we narrowed down allosteric inhibition sites of negative allosteric modulator (NAM) by mutagenesis, homology modeling, and competition studies with positive allosteric modulator (PAM).
View Article and Find Full Text PDFAs a first host barrier, the skin is constantly exposed to environmental insults that perturb its integrity. Tight regulation of skin homeostasis is largely controlled by the aryl hydrocarbon receptor (AhR). Here, we demonstrate that Henna and its major pigment, the naphthoquinone Lawsone activate AhR, both in vitro and in vivo.
View Article and Find Full Text PDFBackground: The thyrotropin receptor (TSHR) is the target for autoimmune thyroid stimulating antibodies (TSAb) triggering hyperthyroidism. Whereas elevated thyroid hormone synthesis by the thyroid in Graves' disease can be treated by antithyroid agents, for the pathogenic activation of TSHR in retro-orbital fibroblasts of the eye, leading to Graves' orbitopathy (GO), no causal TSHR directed therapy is available.
Methods: Due to the therapeutic gap for severe GO, TSHR inhibitors were identified by high-throughput screening in Chinese hamster ovary cells expressing the TSHR.
Unbiased chemoproteomic profiling of small-molecule interactions with endogenous proteins is important for drug discovery. For meaningful results, all protein classes have to be tractable, including G protein-coupled receptors (GPCRs). These receptors are hardly tractable by affinity pulldown from lysates.
View Article and Find Full Text PDFThe L-type amino acid transporter 2 (LAT2) imports amino acids (AA) and also certain thyroid hormones (TH), e.g. 3,3'-T and T, but not rT and T.
View Article and Find Full Text PDFBackground/objective: Consumption of green tea has become increasingly popular, particularly because of claimed reduction in body weight. We recently reported that animals with pharmacological inhibition (by candoxatril) or genetic absence of the endopeptidase neprilysin (NEP) develop an obese phenotype. We now investigated the effect of green tea extract (in drinking water) on body weight and body composition and the mediating role of NEP.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
October 2015
The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) - secreted by the placenta, and lutropin (LH) - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) represent the most important drug targets. Although the smallest functional unit of a GPCR is a monomer, it became clear in the past decades that the vast majority of the receptors form dimers. Only very recently, however, data were presented that some receptors may in fact be expressed as a mixture of monomers and dimers and that the interaction of the receptor protomers is dynamic.
View Article and Find Full Text PDFThe human lutropin/choriogonadotropin receptor (hLHR) for the gonadotropic hormones human luteinizing hormone (hLH; lutropin) and human choriogonadotropin (hCG) is crucial for normal sexual development and fertility. We aimed to unravel differences between the two hLHR hormones in molecular activation mechanisms at hLHR. We utilized a specific hLHR variant that lacks exon 10 (hLHR-delExon10), which maintains full cAMP signaling by hCG, but decreases hLH-induced receptor signaling, resulting in a pathogenic phenotype.
View Article and Find Full Text PDFIn the principal cells of the renal collecting duct, arginine vasopressin (AVP) stimulates the synthesis of cAMP, leading to signaling events that culminate in the phosphorylation of aquaporin-2 water channels and their redistribution from intracellular domains to the plasma membrane via vesicular trafficking. The molecular mechanisms that control aquaporin-2 trafficking and the consequent water reabsorption, however, are not completely understood. Here, we used a cell-based assay and automated immunofluorescence microscopy to screen 17,700 small molecules for inhibitors of the cAMP-dependent redistribution of aquaporin-2.
View Article and Find Full Text PDFThe protease-activated receptor 1 (PAR1) is activated by thrombin cleavage releasing the physiologically-relevant parstatin peptide (residues 1-41). However, the actual length of parstatin was unclear since the receptor may also possess a cleavable signal peptide (residues 1-21) according to prediction programs. Here, we show that this putative signal peptide is indeed functional and removed from the PAR1 resolving the question of parstatin length.
View Article and Find Full Text PDFIn this study we demonstrate that the photoconvertible monomeric Kikume green-red (mKikGR) protein is suitable to study trafficking of G protein-coupled receptors. Taking mKikGR-tagged mutants of the vasopressin V(2) receptor (V(2)R) as models, we analyzed whether the V(2)R-specific pharmacological chaperone SR121463B influences receptor folding on a co- or post-translational level. Misfolded mKikGR-tagged V(2)Rs were completely photoconverted in the early secretory pathway yielding a red receptor population (already synthesized receptors) and an arising green receptor population (newly synthesized receptors).
View Article and Find Full Text PDFThe specific inhibition of the biosynthesis of target proteins is a relatively novel strategy in pharmacology and is based mainly on antisense approaches (e.g. antisense oligonucleotides or RNA interference).
View Article and Find Full Text PDFTransmembrane helices (TMHs) 5 and 6 are known to be important for signal transduction by G-protein-coupled receptors (GPCRs). Our aim was to characterize the interface between TMH5 and TMH6 of the thyrotropin receptor (TSHR) to gain molecular insights into aspects of signal transduction and regulation. A proline at TMH5 position 5.
View Article and Find Full Text PDFA-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes.
View Article and Find Full Text PDFThe corticotropin-releasing factor receptor type 2a (CRF(2(a))R) belongs to the family of G protein-coupled receptors. The receptor possesses an N-terminal pseudo signal peptide that is unable to mediate targeting of the nascent chain to the endoplasmic reticulum membrane during early receptor biogenesis. The pseudo signal peptide remains uncleaved and consequently forms an additional hydrophobic receptor domain with unknown function that is unique within the large G protein-coupled receptor protein family.
View Article and Find Full Text PDFThe thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR.
View Article and Find Full Text PDFThe thyrotropin receptor [thyroid-stimulating hormone receptor (TSHR)], a G-protein-coupled receptor (GPCR), is endogenously activated by thyrotropin, which binds to the extracellular region of the receptor. We previously identified a low-molecular-weight (LMW) agonist of the TSHR and predicted its allosteric binding pocket within the receptor's transmembrane domain. Because binding of the LMW agonist probably disrupts interactions or leads to formation of new interactions among amino acid residues surrounding the pocket, we tested whether mutation of residues at these positions would lead to constitutive signaling activity.
View Article and Find Full Text PDFObjectives: To test the feasibility of cardiac MR imaging in mice using a clinical 3 Tesla whole body MR system for structural and functional analysis. Standard protocols for bright blood cine imaging were adapted for murine dimensions. To validate measurements of functional parameters the MR data were compared with high-resolution echocardiographic measurements.
View Article and Find Full Text PDFBackground: Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-beta (Abeta) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice.
Methodology/principal Findings: We found that while endogenous Abeta concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Abeta deposits even in old NEP knockout mice.