Publications by authors named "Furkan Metin Turgut"

The phenomenon of calendar ageing continues to have an impact on battery systems worldwide by causing them to have undesirable operation life and performance. Predicting the degradation in the capacity can identify whether this phenomenon is occurring for a cell and pave the way for placing mechanisms that can circumvent this behaviour. In this study, the machine learning algorithms, Extreme Gradient Boosting (XGBoost) and artificial neural network (ANN) have been used to predict the calendar ageing data belonging to six types of cell chemistries namely, Lithium Cobalt Oxide, Lithium Iron Phosphate, Lithium Manganese Oxide, Lithium Titanium Oxide, Nickle Cobalt Aluminum Oxide and Nickle Manganese Cobalt Oxide.

View Article and Find Full Text PDF