The continued research of novel reversible inhibitors targeting monoamine oxidase (MAO) B remains crucial for effectively symptomatic treatment of Parkinson's disease. In this study we synthesized and evaluated a new series of 3-aryl benzo[g] and benzo[h] coumarin derivatives as MAO-B inhibitors. Compound A6 has been found to display the most potent inhibitory activity and selectivity against the MAO-B isoform (IC = 13 nM and SI = >7693.
View Article and Find Full Text PDFCoumarin and coumarin-thiosemicarbazone hybrids were synthesized and characterized by various techniques such as FT-IR, H NMR, C NMR, MALDI-TOF-MS spectroscopy, and single crystal X-Ray diffractometer (XRD). The photochemical and photophysical properties of the compounds, such as solvatochromism, solubility, and chemical reactivity, were analyzed using UV-vis spectroscopy in different solvents. Due to the potential biological activities of the synthesized compounds, their binding affinity and mechanisms with calf thymus DNA (ct-DNA) and bovine hemoglobin (BHb) were determined using several useful spectrophotometric and theoretical approaches such as UV-vis absorption and fluorescence spectroscopy, molecular docking, and density functional theory (DFT).
View Article and Find Full Text PDFA series of arylcoumarin derivatives and two novel biscoumarin derivatives were investigated for their human recombinant glutathione S-transferase P1-1 (GSTP1-1) enzyme inhibitory activities for the first time. 4-(3,4-Dihydroxyphenyl)-6,7-dihydroxycoumarin (compound ) was observed to be the most active coumarin derivative (IC: 0.14 µM).
View Article and Find Full Text PDF