This comprehensive review provides insights and suggested strategies for the analysis of germline variants using second- and third-generation sequencing technologies (SGS and TGS). It addresses the critical stages of data processing, starting from alignment and preprocessing to quality control, variant calling, and the removal of artifacts. The document emphasized the importance of meticulous data handling, highlighting advanced methodologies for annotating variants and identifying structural variations and methylated DNA sites.
View Article and Find Full Text PDFMolecular dynamics (MD) simulation of biological processes has always been a challenging task due to the long timescales of the processes involved and the large amount of output data to handle. Markov state models (MSMs) have been introduced as a powerful tool in this area of research, as they provide a mechanistically comprehensible synthesis of the large amount of MD data and, at the same time, can be used to rapidly estimate experimental properties of biological processes. Herein, we propose a method for building MSMs of ion channel permeation from MD trajectories, which directly evaluates the current flowing through the channel from the model's transition matrix (T), which is crucial for comparing simulations and experimental data.
View Article and Find Full Text PDFPolygenic scores (PGSs) offer the ability to predict genetic risk for complex diseases across the life course; a key benefit over short-term prediction models. To produce risk estimates relevant to clinical and public health decision-making, it is important to account for varying effects due to age and sex. Here, we develop a novel framework to estimate country-, age-, and sex-specific estimates of cumulative incidence stratified by PGS for 18 high-burden diseases.
View Article and Find Full Text PDFThe impact of common and rare variants in COVID-19 host genetics has been widely studied. In particular, in Fallerini et al. (Human genetics, 2022, 141, 147-173), common and rare variants were used to define an interpretable machine learning model for predicting COVID-19 severity.
View Article and Find Full Text PDFThe clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI).
View Article and Find Full Text PDFFlavonoids, ubiquitously distributed in the plant world, are regularly ingested with diets rich in fruit, vegetables, wine, and tea. During digestion, they are partially absorbed in the stomach. The present work aimed to assess the in vitro effects of quercetin and ten structurally related flavonoids on the rat gastric fundus smooth muscle, focussing on ATP-dependent K (K6.
View Article and Find Full Text PDFMale sex represents one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that mediate sex-dependent disease outcome are as yet unknown. Here, we identify the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (also known as aromatase) as a host factor that contributes to worsened disease outcome in SARS-CoV-2-infected males.
View Article and Find Full Text PDFResource competition can be the cause of unintended coupling between co-expressed genetic constructs. Here we report the quantification of the resource load imposed by different mammalian genetic components and identify construct designs with increased performance and reduced resource footprint. We use these to generate improved synthetic circuits and optimise the co-expression of transfected cassettes, shedding light on how this can be useful for bioproduction and biotherapeutic applications.
View Article and Find Full Text PDFCarriers of single pathogenic variants of the (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism.
View Article and Find Full Text PDFFast C-type inactivation confers distinctive functional properties to the hERG potassium channel, and its association to inherited and acquired cardiac arrythmias makes the study of the inactivation mechanism of hERG at the atomic detail of paramount importance. At present, two models have been proposed to describe C-type inactivation in K-channels. Experimental data and computational work on the bacterial KcsA channel support the hypothesis that C-type inactivation results from a closure of the selectivity filter that sterically impedes ion conduction.
View Article and Find Full Text PDFObjective: Bipolar disorder is a heritable chronic mental disorder that causes psychosocial impairment through depressive/manic episodes. Familial transmission of bipolar disorder does not follow simple Mendelian patterns of inheritance. The aim of this study was to describe a large family with 12 members affected by bipolar disorder.
View Article and Find Full Text PDFWhole exome sequencing has provided significant opportunities to discover novel candidate genes for intellectual disability and autism spectrum disorders. Variants in the spectrin genes , and have been associated with neurological disorders; however, gene-variants have not been associated with any human disorder. This is the first report that associates gene variants (ENSG00000137877: c.
View Article and Find Full Text PDFThrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections.
View Article and Find Full Text PDFMany pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions.
View Article and Find Full Text PDFThe determinants of severe COVID-19 in healthy adults are poorly understood, which limits the opportunity for early intervention. We present a multiomic analysis using machine learning to characterize the genomic basis of COVID-19 severity. We use single-cell multiome profiling of human lungs to link genetic signals to cell-type-specific functions.
View Article and Find Full Text PDFThe COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is having a massive impact on public health, societies, and economies worldwide. Despite the ongoing vaccination program, treating COVID-19 remains a high priority; thus, a better understanding of the disease is urgently needed. Initially, susceptibility was associated with age, sex, and other prior existing comorbidities.
View Article and Find Full Text PDF