Publications by authors named "Fuquan Tu"

Thyroid storm (TS) leading to acute liver failure is rare but fatal in clinical practice and hepatic failure can remarkably limit medication options for TS. We successfully cured a patient with TS complicated with acute hepatic failure using therapeutic plasma exchange (TPE) and a double plasma molecular absorption system (DPMAS) and summarized the case characteristics of 10 similar critical patients reported worldwide. We recommend that patients with TS complicated with liver failure disuse propylthiouracil or methimazole.

View Article and Find Full Text PDF

This study tested the hypothesis that recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances polymorphonuclear neutrophils (PMNs) via interleukin (IL)-1β to improve the prognosis of secondary infection in sepsis. The latter stage of sepsis is prone to induce immunosuppression, resulting in secondary fatal infections. Recombinant GM-CSF has become a way for sepsis-induced immunosuppression due to its immunomodulatory effect.

View Article and Find Full Text PDF

Delivery of biofactors in a precise and controlled fashion remains a clinical challenge. Stimuli-responsive delivery systems can facilitate 'on-demand' release of therapeutics in response to a variety of physiologic triggering mechanisms (e.g.

View Article and Find Full Text PDF

Inspired by proteins that generate membrane curvature, sense the underlying membrane geometry, and migrate driven by curvature gradients, we explore the question: Can colloids, adhered to lipid bilayers, also sense and respond to membrane geometry? We report the migration of Janus microparticles adhered to giant unilamellar vesicles elongated to present spatially varying curvatures. In our experiments, colloids migrate only when the membranes are tense, suggesting that they migrate to minimize membrane area. By determining the energy dissipated along a trajectory, the energy field is inferred to depend on the local deviatoric curvature, like curvature driven capillary migration on interfaces between immiscible fluids.

View Article and Find Full Text PDF

This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics.

View Article and Find Full Text PDF

Colloidal photonic crystals (CPCs) provide a convenient way to generate structural colour with high stability against degradation under environmental factors. For a number of applications including flexible electronic and energy devices, it is important to generate flexible structural colour that maintains its colour regardless of the angle of observation and the extent of mechanical deformation. However, it is challenging to simultaneously achieve these goals because anisotropy in typical CPC structures (e.

View Article and Find Full Text PDF

One-step formation of stable multiple emulsions is demonstrated using stimuli-responsive amphiphilic Janus particles as emulsifiers. Multiple emulsions stabilized by these stimuli-responsive Janus particles can be induced to release the encapsulant by simply increasing the pH of the continuous phase.

View Article and Find Full Text PDF

Janus particles are biphasic colloids that have two sides with distinct chemistry and wettability. Because of their amphiphilicity, Janus particles present a unique opportunity for stabilizing multiphasic fluid mixtures such as emulsions. Our work is motivated by one class of molecular amphiphiles that change their surfactant properties in response to environmental stimuli.

View Article and Find Full Text PDF

One of the most important properties of emulsions is their stability. Most emulsions stabilized with molecular surfactants tend to lose their stability over time via different mechanisms. Although the stability of emulsions stabilized with homogeneous particles have been shown to be superior to that of surfactant-stabilized emulsions, these Pickering emulsions nevertheless are only kinetically stable and thus can undergo destabilization.

View Article and Find Full Text PDF

The stability and size of poly(lactic-co-glycolic)acid (PLGA)-containing double emulsions and the resulting PLGA microcapsules are controlled by varying the composition of highly monodisperse water-in-oil-in-water (W/O/W) double emulsions. We propose that the basic inner phase of W/O/W double emulsions catalyzes the hydrolysis of PLGA and the ionization of carboxylic acid end groups, which enhances the surface activity of PLGA and facilitates the stabilization of the double emulsions. The size of PLGA-containing double emulsions and that of resulting microcapsules can be readily tuned by osmotic annealing, which depends on the concentration ratio of a solute in the inner and outer phases of double emulsions.

View Article and Find Full Text PDF