Publications by authors named "Fuqiu Ma"

Fenton-like advanced oxidation processes (AOPs) are commonly used to eliminate recalcitrant organic pollutants as they produce highly reactive oxygen species through the reactions between the catalysts and oxidants. Recently, considerable attention has been directed towards shell-structured Fenton-like catalysts that offer high stability, maximum utilization of active sites, and exceptional catalytic performance. In this review, we have introduced the concept of several typical shell-forming architectures (e.

View Article and Find Full Text PDF

Unimolecular reduction and bimolecular reductive coupling of carbon monoxide (CO) represent important ways to synthesize organic feedstocks. Reductive activation of CO through open-shell pathways, though rare, can help overcome the barriers of many traditional organometallic elementary reactions that are hard to achieve. Herein we successfully achieve the unimolecular reduction of CO to (TPP)RhCHOSiRRR (TPP = 5,10,15,20-tetraphenylporphyrin), and the release of products CHOSiRRR, TEMPO-CHOSiRRR and BrCHOSiRRR in near-quantitative yield under visible light (420-780 nm), which involves radical formation from Rh-C bond homolysis.

View Article and Find Full Text PDF

To achieve the goals of "carbon peak and carbon neutrality" and sustainable development, we propose "Three-Dimensional Environment-Friendly" materials to balance the urgent need for the development of clean energy and the reduction of secondary environmental pollution during adsorbent preparation. In this study, three novel chitosan adsorbents (CMNSC-Leu, CMNSC-Pro, CMNSC-Phe) for uranium adsorption were designed on the basis of molecular level and successfully synthesized with three different amino acids (leucine, proline, phenylalanine) through amidation reaction in an aqueous environment using a sustainable green chitosan material. The uranium adsorption capacity of the three adsorbents was evaluated by batch adsorption, selectivity and recyclability studies.

View Article and Find Full Text PDF

Based on the goal of "carbon neutralization and carbon peaking", it is still challenging to develop a high adsorption performance and environmentally friendly material for uranium extraction. We proposed a new idea of "Three-Dimensional Environmental-Friendly". A series of amino acid bis-substituted chitosan aerogels (C-1, C-2, C-3, C-4 and C-5) were prepared by ice template method and selective substitution reaction in water environment.

View Article and Find Full Text PDF

The directed construction of productive adsorbents is essential to avoid damaging human health from the harmful radioactive and toxic U(VI)-containing wastewater. Herein, a sort of Zr-based metal organic framework (MOF) called PCN-222 was synthesized and oxime functionalized based on directed molecular structure design to synthesize an efficient adsorbent with antimicrobial activity, named PCN-222-OM, for recovering U(VI) from wastewater. PCN-222-OM unfolded splendid adsorption capacity (403.

View Article and Find Full Text PDF

The purpose of this research was to design and synthesize an adsorbent based on polyimide covalent organic frameworks (PICOFs) for uranium-containing wastewater treatment and uranium recovery. A modified solvothermal method was innovatively proposed to synthesize PICOFs with high specific surface area (1998.5 m g) and regular pore structure.

View Article and Find Full Text PDF
Article Synopsis
  • Nuclear power is growing as a green energy source to meet the rising global energy demand, with uranium as its main fuel.
  • The process of extracting uranium from seawater has potential but faces challenges due to contamination from harmful microorganisms.
  • This paper examines various antibiofouling materials that prevent marine microorganisms from hindering uranium extraction and discusses the mechanisms by which these materials work.
View Article and Find Full Text PDF

Here, we have demonstrated an innovative decontamination strategy using molten salts as a solvent to clean stubborn uranium contaminants on stainless steel surfaces. The aim of this work was to investigate the evolutionary path of contaminants in molten salts to reveal the decontamination mechanism, thus providing a basis for the practical application of the method. Thermodynamic analysis revealed that alkali metal hydroxides, carbonates, chlorides and nitrates can react with uranium oxides (UO and UO) to form various uranates.

View Article and Find Full Text PDF

Its high coordination number and tendency to cluster make Th suitable for constructing metal-organic frameworks (MOFs) with novel topologies. In this work, two novel thorium-based heterometallic MOF isomers (IHEP-17 and IHEP-18) were assembled from a Th cluster, a multifunctional organic ligand [4-(1-pyrazol-4-yl)benzoic acid (HPyba)], and Cu/Ni cations via the one-pot solvothermal synthesis strategy. The framework features a 6,12-connected new topology net and contains two kinds of supramolecular cage structures, ThM and ThM, suitable for guest exchange.

View Article and Find Full Text PDF

With the development of nuclear energy, spent cationic exchange resins after purification of radioactive wastewater must be treated. Molten-salt oxidation (MSO) can minimize the disposal content of resins and capture SO. In this work, the decomposition of uranium-containing resins in carbonate molten salt in N and air atmospheres was investigated.

View Article and Find Full Text PDF

Practical adsorbents with high efficiency are essential to effectively treating wastewater. Herein, a novel porous uranium adsorbent (PA-HCP) having a considerable amount of amine and phosphoryl groups was designed and synthesized by grafting polyethyleneimine (PEI) on a hyper-cross-linked fluorene-9-bisphenol skeleton via phosphoramidate linkers. Furthermore, it was used to treat uranium contamination in the environment.

View Article and Find Full Text PDF

The recycling of uranium in wastewater is not only beneficial to the protection of ecological safety but also has great significance for the sustainable development of nuclear energy. However, there is no satisfactory method to recover and reuse uranium efficiently up to now. Here, we have developed an efficient and economical strategy that can achieve uranium recovery and direct reuse in wastewater.

View Article and Find Full Text PDF

Cationic exchange resins (CERs) were applied for purification and clarifying process of radioactive wastewater in nuclear industry, which was a kind of sulfur-containing organic material. Molten-salt oxidation (MSO) method can be applied for the treatment of spent CERs and the absorption of acid gas (such as SO). The experiments about the molten salt destruction of the original resin and Cu ions doped resin were conducted.

View Article and Find Full Text PDF

Herein, we report a new strategy for the rapid removal of uranium-containing contaminants from metal surfaces, and it relies on decontaminants made of NaOH-based molten salts. The addition of NaCO and NaCl to NaOH exhibited superior decontamination performance, with a decontamination rate of 93.8% within 12 min, outdoing the performance of the single NaOH molten salt.

View Article and Find Full Text PDF

Through molecule self-assembly and subsequent surface functionalization, novel uranium adsorbent AO-OB hierarchical self-assembled polyimide microspheres (AO-OBHSPIMs) were obtained by introducing the amidoxime groups into hierarchical self-assembled polyimide microspheres for the efficient and selective recovery of uranium from wastewater. The results of Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm showed that AO-OBHSPIMs were a semicrystalline polymer material with self-supporting hierarchical structure and low pore volume, and they were equipped with abundant amidoxime groups. Given the recognized selectivity of amidoxime groups and their hierarchical structure, AO-OBHSPIMs exhibited excellent selectivity to uranyl ions.

View Article and Find Full Text PDF

Molten salt oxidation (MSO) is an advanced method for waste resins treatment; nevertheless, the research about gas product variations of resins under different stoichiometric air feed coefficient (α) is rare. The optimal working condition of hazardous waste disposal is obtained through thermodynamic equilibrium calculation, and the method to improve the treatment efficiency is found to guide the optimization of the actual experiment. In this paper, Fact Sage was used to calculate the oxidation products of cation exchange resins (CERs) at different temperatures and α, focusing on the similarities and differences through the contents of CO, CH, CO, and SO during the oxidation of CERs, the MSO of CERs, and the theoretical calculation.

View Article and Find Full Text PDF

As the primary functional groups of amidoxime sorbents for uranium recovery from seawater, di(amidoxime) ligands can be cyclized into different ligands in the presence of Cu(II)/Ni(II) at different pH values. Here we first found that a linear ligand glutardiamidoxime can be catalyzed into a cyclic ligand glutarimidedioxime by Ni(II) in acidic solution.

View Article and Find Full Text PDF

After the treatment of liquid radioactive waste, there is a certain amount of Cs in the waste resin, and these Cs-doped resins are prone to volatilize during the thermal treatment process and cause radionuclide leakage. The molten salt oxidation (MSO) can effectively prevent the volatilization of toxic metal, especially the volatilization of Cs. Under nitrogen and air conditions, it is found that the oxidation behavior between Cs-doped and clean cation exchange resins (CERs) is quite different.

View Article and Find Full Text PDF

In this paper, nitric acid-modified activated carbon was used as an electrode in the electrosorption process for the removal of Co, Mn, and Ni from wastewater. The effects of applied voltage, initial pH, and coexisting ions on removal efficiency were investigated. The adsorption process was evaluated by adsorption isotherm models.

View Article and Find Full Text PDF

Electrochemical techniques are considered promising applications to immobilize uranium in alkaline wastewater in order to prevent its migration into groundwater and soil. In this work, the results of electrochemical and Atomic Force Microscope (AFM) demonstrate a successful immobilization of uranyl in the carbonate system by U(VI)-U(V), U(V)-U(IV) reduction, and U(V) disproportionation reactions. The results indicated that the electrochemical fixation rate in alkaline system could reach more than 99%.

View Article and Find Full Text PDF

Herein, a dual-function Zeolitic Imidazole Frameworks (ZIFs) ZIF-90 grafted with malononitrile by Knoevenagel reaction and following with an amidoximation reaction to form an efficient U (VI) adsorbent (ZIF-90-AO). The strong chelation power of amidoxime groups (AO) with uranium and ZIF-90's mesoporous structure afforded ZIF-90-AO high maximum uranium adsorption capacity of 468.3 mg/g (pH = 5).

View Article and Find Full Text PDF

Uranium (U) is hazardous and radioactive, wastewater containing U(VI) should be treated before being discharged. Here, two novel uranium adsorbents, phosphorylated hyper-cross-linked bisphenol A (PHCP-1) and fluorene-9-bisphenol (PHCP-2) were separately synthesized via Friedel-Crafts reaction followed by phosphorylation using phosphorus oxychloride. PHCPs had a BET surface area (up to 564 m/g) with pore sizes of 2.

View Article and Find Full Text PDF

The low cost β-zeolite and ethylenediamine modified β-zeolite (EDA@β-zeolite) were prepared by self-assembly method and used for Cu(II) removal from contaminated aqueous solution. Removal ability of β-zeolite toward Cu(II) was greatly improved after ethylenediamine (EDA) modification, the removal performance was greatly affected by environmental conditions. XPS results illustrated that the amide group played important role in the removal process by forming complexes with Cu(II).

View Article and Find Full Text PDF

The complexation and selectivity of ,-di(2-ethylhexyl)-diglycolamic acid (HDEHDGA/kerosene, HA) toward the light lanthanides, La(III), Ce(III), Pr(III), and Nd(III), are presented for the extraction from chloride media. In the low pH region (pH 1.8-2.

View Article and Find Full Text PDF

Synergistic effects play an important role in improving the catalytic activity for enzyme-like reactions. Compared to individual nanomaterials, a system consisting of multiple components usually exhibits enhanced catalytic activity as an enzyme mimic. Herein we describe the synthesis of CuFeO/CuS/polypyrrole (PPy) ternary nanotubes as an efficient peroxidase mimic via a three-step approach involving an electrospinning process, annealing treatment and hydrothermal reaction.

View Article and Find Full Text PDF