Publications by authors named "Fuoss P"

Liquid polymorphism is an intriguing phenomenon that has been found in a few single-component systems, the most famous being water. By supercooling liquid Te to more than 130 K below its melting point and performing simultaneous small-angle and wide-angle X-ray scattering measurements, we observe clear maxima in its thermodynamic response functions around 615 K, suggesting the possible existence of liquid polymorphism. A close look at the underlying structural evolution shows the development of intermediate-range order upon cooling, most strongly around the thermodynamic maxima, which we attribute to bond-orientational ordering.

View Article and Find Full Text PDF

We report observations of nanosecond nonuniform colloidal dynamics in a free flowing liquid jet using ultrafast x-ray speckle visibility spectroscopy. Utilizing a nanosecond double-bunch mode, the Linac Coherent Light Source free electron laser produced pairs of femtosecond coherent hard x-ray pulses. By exploring anisotropy in the visibility of summed speckle patterns which relates to the correlation functions, we evaluate not only the average particle flow rate in a colloidal nanoparticle jet, but also the nonuniform flow field within.

View Article and Find Full Text PDF

X-ray speckle visibility spectroscopy using X-ray free-electron lasers has long been proposed as a probe of fast dynamics in noncrystalline materials. In this paper, numerical modeling is presented to show how the data interpretation of visibility spectroscopy can be impacted by the nonidealities of real-life X-ray detectors. Using simulated detector data, this work provides a detailed analysis of the systematic errors of several contrast extraction algorithms in the context of low-count-rate X-ray speckle visibility spectroscopy and their origins are discussed.

View Article and Find Full Text PDF

X-ray free-electron lasers (X-FELs) present new opportunities to study ultrafast lattice dynamics in complex materials. While the unprecedented source brilliance enables high fidelity measurement of structural dynamics, it also raises experimental challenges related to the understanding and control of beam-induced irreversible structural changes in samples that can ultimately impact the interpretation of experimental results. This is also important for designing reliable high performance X-ray optical components.

View Article and Find Full Text PDF

A virtual special issue of advances in the field of X-ray free-electron lasers.

View Article and Find Full Text PDF

We present the design and analysis of a hard x-ray split-delay optical arrangement that combines diffractive and crystal optics. Transmission gratings are employed to achieve the much-desired amplitude splitting and recombination of the beam. Asymmetric channel-cut crystals are utilized to tune the relative delay time.

View Article and Find Full Text PDF

The ability to deliver two coherent X-ray pulses with precise time-delays ranging from a few femtoseconds to nanoseconds enables critical capabilities of probing ultra-fast phenomena in condensed matter systems at X-ray free electron laser (FEL) sources. Recent progress made in the hard X-ray split-and-delay optics developments now brings a very promising prospect for resolving atomic-scale motions that were not accessible by previous time-resolved techniques. Here, we report on characterizing the spatial and temporal coherence properties of the hard X-ray FEL beam after propagating through split-and-delay optics.

View Article and Find Full Text PDF

We present the concept and a prototypical implementation of a compact x-ray split-delay system that is capable of performing continuous on-the-fly delay scans over a range of ∼10  ps with sub-100 nanoradian pointing stability. The system consists of four channel-cut silicon crystals, two of which have gradually varying gap sizes from intentional 5 deg asymmetric cuts. The delay adjustment is realized by linear motions of these two monolithic varying-gap channel cuts, where the x-ray beam experiences pairs of anti-parallel reflections, and thus becomes less sensitive in output beam pointing to motion imperfections of the translation stages.

View Article and Find Full Text PDF

In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory to obtain the beam divergence and thus coherence length.

View Article and Find Full Text PDF

One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane.

View Article and Find Full Text PDF

We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

View Article and Find Full Text PDF

We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan.

View Article and Find Full Text PDF

Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure-property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP).

View Article and Find Full Text PDF

A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design.

View Article and Find Full Text PDF

In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm.

View Article and Find Full Text PDF

X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. Here, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. The calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach--a capability critical for advancing nanofocused x-ray diffraction microscopy.

View Article and Find Full Text PDF

We report the imaging of nanoscale distributions of lattice strain and rotation in complementary components of lithographically engineered epitaxial thin film semiconductor heterostructures using synchrotron x-ray Bragg projection ptychography (BPP). We introduce a new analysis method that enables lattice rotation and out-of-plane strain to be determined independently from a single BPP phase reconstruction, and we apply it to two laterally adjacent, multiaxially stressed materials in a prototype channel device. These results quantitatively agree with mechanical modeling and demonstrate the ability of BPP to map out-of-plane lattice dilatation, a parameter critical to the performance of electronic materials.

View Article and Find Full Text PDF

Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques.

View Article and Find Full Text PDF

Polymer-assisted deposition (PAD) is one of the chemical solution deposition methods which have been successfully used to grow films, form coatings, and synthesize nanostructured materials. In comparison with other conventional solution-based deposition techniques, PAD differs in its use of water-soluble polymers in the solution that prevent the metal ions from unwanted chemical reactions and keep the solution stable. Furthermore, filtration to remove non-coordinated cations and anions in the PAD process ensures well controlled nucleation, which enables the growth of high quality epitaxial films with desired structural and physical properties.

View Article and Find Full Text PDF

The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse mode 〈Ms〉 = 1.1.

View Article and Find Full Text PDF

We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.

View Article and Find Full Text PDF

In the growing field of in operando and in situ X-ray experiments, there exists a large disparity in the types of environments and equipment to control them. This situation makes it challenging to conduct multiple experiments with a single mechanical interface to the diffractometer. Here, we describe the design and implementation of a modular instrument mounting system that can be installed on a standard six-circle diffractometer (e.

View Article and Find Full Text PDF

The availability of ultrafast pulses of coherent hard x rays from the Linac Coherent Light Source opens new opportunities for studies of atomic-scale dynamics in amorphous materials. Here, we show that single ultrafast coherent x-ray pulses can be used to observe the speckle contrast in the high-angle diffraction from liquid Ga and glassy Ni(2)Pd(2)P and B(2)O(3). We determine the thresholds above which the x-ray pulses disturb the atomic arrangements.

View Article and Find Full Text PDF

Atomic layer engineering enables fabrication of a chemically sharp oxide heterointerface. The interface formation and strain evolution during the initial growth of LaAlO(3) /SrTiO(3) heterostructures by pulsed laser deposition are investigated in search of a means for controlling the atomic-sharpness of the interface. This study shows that inserting a monolayer of LaAlO(3) grown at high oxygen pressure dramatically enhances interface abruptness.

View Article and Find Full Text PDF

We imaged nanoscale lattice strain in a multilayer semiconductor device prototype with a new X-ray technique, nanofocused Bragg projection ptychography. Applying this technique to the epitaxial stressor layer of a SiGe-on-SOI structure, we measured the internal lattice behavior in a targeted region of a single device and demonstrated that its internal strain profile consisted of two competing lattice distortions. These results provide the strongest nondestructive test to date of continuum modeling predictions of nanoscale strain distributions.

View Article and Find Full Text PDF