Publications by authors named "Funmilayo Olopade"

Introduction: Vanadium is a widely used transition metal in industrial applications, but it also poses significant neurotoxic and environmental risks. Previous studies have shown that exposure to vanadium may lead to neurodegenerative diseases and neuropathic pain, raising concerns about its impact on human health and the ecosystem. To address vanadium neurotoxicity, through targeting NMDA glutamate and dopamine signaling, both involved in neurodegenerative disorders, shows promise.

View Article and Find Full Text PDF

Background: The hippocampal alterations resulting from hydrocephalus are associated with various cognitive dysfunctions. Reduced learning and memory are early functional deficits that recover with time in experimental hydrocephalus. This study investigated the recovery processes of learning and memory loss in relation to the morphology of hippocampal pyramidal neurons and the degree of expansion of the ventricles.

View Article and Find Full Text PDF

Vanadium is a ubiquitous transition metal that has been generating contrasting research interest. Therapeutically, vanadium possess antidiabetic, antitumor, antiparasitic and even neuroprotective activities. On the flip side, vanadium has been reported to cause multisystemic toxicities with a strong predilection for the nervous system.

View Article and Find Full Text PDF

Vanadium is a prevalent neurotoxic transition metal with therapeutic potentials in some neurological conditions. Hydrocephalus poses a major clinical burden in neurological practice in Africa. Its primary treatment (shunting) has complications, including infection and blockage; alternative drug-based therapies are therefore necessary.

View Article and Find Full Text PDF

Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity.

View Article and Find Full Text PDF

Pollution by heavy metals is a threat to public health because of the adverse effects on multiple organ systems including the brain. Here, we used the African giant rat (AGR) as a novel sentinel host to assess the effect of heavy metal accumulation and consequential neuropathology upon the brain. For this study, AGR were collected from distinct geographical regions of Nigeria: the rain forest region of south-west Nigeria (Ibadan), the central north of Nigeria (Abuja), and in oil-polluted areas of south Nigeria (Port-Harcourt).

View Article and Find Full Text PDF

Background: Hydrocephalus is a neurological condition known to cause learning and memory disabilities due to its damaging effect on the hippocampal neurons, especially pyramidal neurons. Vanadium at low doses has been observed to improve learning and memory abilities in neurological disorders but it is uncertain whether such protection will be provided in hydrocephalus. We investigated the morphology of hippocampal pyramidal neurons and neurobehavior in vanadium-treated and control juvenile hydrocephalic mice.

View Article and Find Full Text PDF

Increased exploitation of minerals has led to pollution of confined environments as documented in Nigeria Niger Delta. Information on the effects on brain of such exposure is limited. Due to its exploratory activities, the African giant rat () (AGR) provides a unique model for neuroecotoxicological research to determine levels of animal and human exposure to different pollutants.

View Article and Find Full Text PDF

The incidence of spinal cord (SC) injury in developed and undeveloped countries is alarming. The pig (Sus scrofa) has been recommended as a suitable research model for translational studies because of its morphophysiological similarities of organ systems with humans. There is a dearth of information on the SC anatomy of the large white and landrace crossbreed (LW-LC) pigs.

View Article and Find Full Text PDF

Background: Hydrocephalus is currently managed by cerebrospinal fluid diversion from the cerebral ventricles to other body sites, but this is complicated by obstruction and infection in young infants, thus adding to morbidity and mortality. Studies have reported caffeine to be a pleiotropic neuroprotective drug in the developing brain due to its antioxidant, anti-inflammatory, and antiapoptotic properties, with improved white matter microstructural development. In this study, we investigate the use of caffeine administration as a possible means of pharmacological management for hydrocephalus.

View Article and Find Full Text PDF

Metals are natural component of the ecosystem present throughout the layers of atmosphere; their abundant expression in the brain indicates their importance in the central nervous system (CNS). Within the brain tissue, their distribution is highly compartmentalized, the pattern of which is determined by their primary roles. Bio-imaging of the brain to reveal spatial distribution of metals within specific regions has provided a unique understanding of brain biochemistry and architecture, linking both the structures and the functions through several metal mediated activities.

View Article and Find Full Text PDF

Caffeine is the most widely consumed psychoactive drug in the world, ingested as natural components of chocolate, coffee and tea and as added components to soda and energy drinks. Here we assessed behavioural changes caused by chronic caffeine administration as well as morphological changes within specific regions of the adult mice brain: the hippocampus and amygdala. Twenty-four adult male albino mice were randomly divided into three groups.

View Article and Find Full Text PDF

Introduction: Erythrophleum Ivorense (EI) is a tree found across tropical Africa. The bark of EI is widely used as hunting poisons for animals and ordeal poison in humans. Eating this plant causes paralysis, respiratory distress, and amnesia.

View Article and Find Full Text PDF

  Kolaviron is a mixture of bi-flavonoids from seed Garcinia kola seed, and has been previously shown to exhibit Nrf2 antioxidant-mediated inhibition of neuroinflammation in LPS-activated BV2 microglia. In this study, we investigated neuroprotective effects of kolaviron in LPS-induced memory impairment in rats. Wistar rats (225-250) g was used for this study.

View Article and Find Full Text PDF

Parkinson's disease (PD) pathology is characterised by distinct types of cellular defects, notably associated with oxidative damage and mitochondria dysfunction, leading to the selective loss of dopaminergic neurons in the brain's substantia nigra pars compacta (SNpc). Exposure to some environmental toxicants and heavy metals has been associated with PD pathogenesis. Raised iron levels have also been consistently observed in the nigrostriatal pathway of PD cases.

View Article and Find Full Text PDF

Cerebellar abnormalities are commonly associated with hydrocephalus. However, the effect of hydrocephalus on the otherwise normal cerebellum has been largely neglected. This study assesses the morphological changes in the Purkinje cells in relation to cerebellar dysfunction observed in juvenile hydrocephalic rats.

View Article and Find Full Text PDF

Hydrocephalus is especially prevalent in countries with limited resources, where its treatment is still a challenge. However, long-term neuropathological changes in untreated hydrocephalus remain largely unexplored. The present study looks at cortical parenchyma and neuroinflammation in acquired, chronic hydrocephalus.

View Article and Find Full Text PDF

Vanadium, atomic number 23, is a transition metal widely distributed in nature. It is a major contaminant of fossil fuels and is widely used in industry as catalysts, in welding, and making steel alloys. Over the years, vanadium compounds have been generating interests due to their use as therapeutic agents in the control of diabetes, tuberculosis, and some neoplasms.

View Article and Find Full Text PDF

Vanadium is a potentially toxic environmental pollutant and induces oxidative damage in biological systems including the central nervous system (CNS). Its deposition in brain tissue may be involved in the pathogenesis of certain neurological disorders which after prolonged exposure can culminate into more severe pathology. Most studies on vanadium neurotoxicity have been done after acute exposure but in reality some populations are exposed for a lifetime.

View Article and Find Full Text PDF

The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed.

View Article and Find Full Text PDF

Environmental exposure to vanadium occurs in areas of persistent burning of fossil fuels; this metal is known to induce oxidative stress and oligodendrocyte damage. Here, we determined whether vanadium exposure (3 mg/kg) in mice during the first 3 postnatal months leads to a sustained neuroinflammatory response. Body weight monitoring, and muscle strength and open field tests showed reduction of body weight gain and locomotor impairment in vanadium-exposed mice.

View Article and Find Full Text PDF

Background: Grewia carpinifolia is a plant commonly used in the tropics to manage various central nervous system (CNS) disorders. However, despite its widespread use no scientific work has been reported to validate these claims.

Objectives: To evaluate the activity of G.

View Article and Find Full Text PDF

Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn.

View Article and Find Full Text PDF

The pterion which marks the union of 4 bones of the cranium is located superior to the zygomatic arch and posterior to the frontozygomatic suture. It is an important neurosurgical landmark for the lateral/pterional approach and has racial differences in both its location and pattern of union of the bones. This study aims to analyze the location and types of pterion in adult Nigerian skulls.

View Article and Find Full Text PDF