The COVID-19 pandemic has created a global health crisis, with challenges arising from the ongoing evolution of the SARS-CoV-2 virus, the emergence of new strains, and the long-term effects of COVID-19. Aiming to overcome the development of viral resistance, our study here focused on developing broad-spectrum pan-coronavirus antiviral therapies by targeting host protein quality control mechanisms essential for viral replication. Screening an in-house compound library led to the discovery of three candidate compounds targeting cellular proteostasis.
View Article and Find Full Text PDFA series of arylsulfones and heteroarylsulfones have previously been demonstrated to dysregulate the conserved bacterial ClpP protease, causing the unspecific degradation of essential cellular housekeeping proteins and ultimately resulting in cell death. A cocrystal structure of a 2-β-sulfonylamide analog, ACP1-06, with ClpP showed that its 2-pyridyl sulfonyl substituent adopts two orientations in the binding site related through a sulfone bond rotation. From this, a new -aryl phosphine oxide scaffold, designated as ACP6, was designed based on a "conformation merging" approach of the dual orientation of the ACP1-06 sulfone.
View Article and Find Full Text PDFEvolving antimicrobial resistance has motivated the search for novel targets and alternative therapies. Caseinolytic protease (ClpP) has emerged as an enticing new target since its function is conserved and essential for bacterial fitness, and because its inhibition or dysregulation leads to bacterial cell death. ClpP protease function controls global protein homeostasis and is, therefore, crucial for the maintenance of the bacterial proteome during growth and infection.
View Article and Find Full Text PDF