Publications by authors named "Funian Mo"

Conventional Ag-Zn batteries have historically faced the challenge of poor cycling stability, rooting in issues associated with Ag cathode dissolution and Zn anode dendrites. Herein, we present a pioneering decoupled Sn-Ag cell, which features two chambers separated by a cation-exchange membrane, containing a dendrite-free Sn metal anode immersed in an alkaline anolyte, and an Ag nanowires/carbon nanotube 3D thick-network cathode in a neutral catholyte. Benefiting from the achieved high electroplating/stripping stability of the metallic Sn anode in the alkaline electrolyte and the electrochemical reversibility of the Ag/AgCl cathode redox couple in the neutral electrolyte, the assembled decoupled Sn-Ag cell demonstrates superior cycling stability, retaining 82.

View Article and Find Full Text PDF

The extensively studied Prussian blue analogs (PBAs) in various batteries are limited by their low discharge capacity, or subpar rate etc., which are solely reliant on the cation (de)intercalation mechanism. In contrast to the currently predominant focus on cations, we report the overlooked anion-cation competition chemistry (Cl, K, Zn) stimulated by high-voltage scanning.

View Article and Find Full Text PDF

Electrolysis of water has emerged as a prominent area of research in recent years. As a promising catalyst support, copper foam is widely investigated for electrolytic water, yet the insufficient mechanical strength and corrosion resistance render it less suitable for harsh working conditions. To exploit high-performance catalyst supports, various metal supports are comprehensively evaluated, and TiAlV (Ti64) support exhibited outstanding compression and corrosion resistance.

View Article and Find Full Text PDF

Modulating the solvation structure of hydrated zinc ions using organic additives stands as a pragmatic approach to suppress dendrite formation and corrosion on zinc metal anodes (ZMAs), thereby enhancing the rechargeability of aqueous Zn-ion batteries. However, fundamental screening principles for organic additives with diverse molecular structures remain elusive, especially for isomers with the same molecular formula. This study delves into the impact of three isomeric hexagonal alcohols (mannitol, sorbitol, and galactitol) as additives in adjusting Zn solvation structural behaviors within ZnSO baseline electrolytes.

View Article and Find Full Text PDF

The cycling stability of a thin zinc anode under high zinc utilization has a critical impact on the overall energy density and practical lifetime of zinc ion batteries. In this study, an ion sieve protection layer (ZnSnF@Zn) was constructed on the surface of a zinc anode by chemical replacement. The ion sieve facilitated the transport and desolvation of zinc ions at the anode/electrolyte interface, reduced the zinc deposition overpotential, and inhibited side reactions.

View Article and Find Full Text PDF

The iodine (I) electrode involving two-electron transfer chemistry by converting between I and I, has the potential to deliver theoretically doubled capacity and higher working voltage platforms, thus achieving higher energy density. However, owing to the slow kinetics of the cascade two-electron transfer reactions, the system suffers from large overpotentials and low power density, especially at high working currents and low temperatures. Here, an inverse-opal-structured cobalt sulfide@nitrogen-doped-carbon (CoS@NC) catalyst with unique charge-deficient states is developed to promote the reaction kinetics of the I/I electrode.

View Article and Find Full Text PDF

Two-dimensional (2D) transition metal borides (MBenes), new members of the 2D materials family, hold great promise for use in the electrocatalytic and energy storage fields because of their high specific area, high chemical activity, and fast charge carrier mobility. Although various types of MBenes are reported, layered MBenes featuring redox-active terminal groups for high energy output are not yet produced. A facile and energy-efficient method for synthesizing MBenes equipped with redox-active terminal groups for cascade Zn||I batteries is presented.

View Article and Find Full Text PDF

Hydrogels possess unique polymer networks that offer flexibility/stretchability, high ionic conductivity, and resistance to electrolyte leakage, making them suitable for deformable energy storage devices. Endowing the mechanical functionality of the hydrogel electrolytes focus on either enhancing the stretchability or the toughness. However, the stretchability and the toughness are generally a trade-off that the stretchable gels are intrinsically prone to damage and sensitive to notches and cracks.

View Article and Find Full Text PDF

High iodine loading and high-temperature adaptability of the iodine cathode are prerequisites to achieving high energy density at full battery level and promoting the practical application for the zinc-iodine (Zn-I ) battery. However, it would aggravate the polyiodide shuttle effect when employing high iodine loading and working temperature. Here, a sustainable cationic cellulose nanofiber (cCNF) was employed to confine the active iodine species through strong physiochemical adsorption to enlarge the iodine loading and stabilize it even at high temperatures.

View Article and Find Full Text PDF

Uncontrollable dendrite formation in the Zn anode is the bottleneck of the commercialization of rechargeable aqueous zinc-based batteries (RAZBs). Interface, the location of the charge transfer process occuring, can significantly affect the further morphology evolution in ways that have not yet been fully comprehended, for example, the crystal facet and orientation of the coating layer. In this study, we demonstrated that the morphology and kinetics of the Zn anode could be tuned by the crystal facet.

View Article and Find Full Text PDF

Porous metal foams (e.g., Ni/Cu/Ti) are applied as catalyst supports extensively for water splitting due to their large specific area and excellent conductivity, however, intrinsic bubble congestion is unavoidable because of the irregular three-dimensional (3D) networks, resulting in high polarization and degraded electrocatalytic performances.

View Article and Find Full Text PDF

With the advantages of benign mechanical property, electrochemical stability, and low cost, graphite fibers (GFs) have been widely used as electrodes for vanadium redox flow batteries (VRFBs). However, GFs usually possess inferior electrochemical activity and ion diffusion kinetics for electrode reaction, vastly limiting their application in VRFBs. Here, a 3D carbon nanonetwork coated GFs with multi-heteroatom doping was constructed for application in VRFBs via low temperature polymerization between linear polymer monomer and phytic acid, and subsequent carbonization (900 °C) on the GFs (GF@PCNs-900).

View Article and Find Full Text PDF

While not affecting electrochemical performance of energy storage devices, integrating multi-functional properties such as electrochromic functions into energy storage devices can effectively promote the development of multifunctional devices. Compared with inorganic electrochromic materials, organic materials possess the significant advantages of facile preparation, low cost, and large color contrast. Specifically, most polymer materials show excellent electrochemical properties, which can be widely used in the design and development of energy storage devices.

View Article and Find Full Text PDF

A compatible and robust electrode-electrolyte interface is favorable in resolving the severe dendritic growth and side reactions of aqueous Zn-ion batteries toward commercial-standard lifespan and charging-discharging rate. Herein, a chemical welding strategy through in situ construction of a gel electrolyte that enables Zn-ion batteries to achieve ultralong life and reversibility is reported. The gel electrolyte is spontaneously formed on the Zn anode surface by redox polymerization with the initiation of Zn metal.

View Article and Find Full Text PDF

In recent years, thanks to the investigation of the in-depth mechanism, novel cathode material exploitation, and electrolyte optimization, the electrochemical performance of rechargeable Zn-based batteries (RZBs) has been significantly improved. Nevertheless, there are still some persistent challenges locating the instability of the Zn anodes that hinder the commercialization and industrialization of RZBs, especially the obstinate dendrites and hydrogen evolution reaction (HER) on Zn anodes, which will dramatically compromise the cycle stability and Coulombic efficiency. Therefore, various strategies with fundamental design principles focusing on the suppression of dendrite and the HER have been carefully summarized and categorized in this review, which are critically dissected according to the intrinsic mechanisms.

View Article and Find Full Text PDF

The performances of rechargeable batteries are strongly affected by the operating environmental temperature. In particular, low temperatures (e.g.

View Article and Find Full Text PDF

Traditional cathodes for aqueous Zn-ion batteries are afflicted by a limited specific capacity and fearful Zn dendrites. Herein, these troubles are disposed of with a conversion-type Zn-S battery and low-cost deep eutectic solvent (DES). By utilizing the optimized electrolyte, the symmetrical Zn battery can stably cycle over 3920 h, which also confers on the Zn-S battery an ultrahigh specific capacity of ∼846 mA h g and energy density of 259 W h kg at 0.

View Article and Find Full Text PDF

While traditional three-layer structure supercapacitors are under mechanical manipulations, the high-stress region concentrates, inevitably causing persistent structural problems including interlayer slippage, crease formation, and delamination of the electrode-electrolyte interface. Toward this, an all-polymeric, all-elastic and non-laminated supercapacitor with high mechanical reliability and excellent electrochemical performance is developed. Specifically, a polypyrrole electrode layer is in situ integrated into a silk fibroin-based elastic supramolecular hydrogel film with extensive hydrogen and covalent bonds, where a non-laminate device is realized with structural elasticity at the device level.

View Article and Find Full Text PDF

Aqueous rechargeable metal-ion batteries (ARMBs) represent one of the current research frontiers due to their low cost, high safety, and other unique features. Evolving to a practically useful device, the ARMBs must be adaptable to various ambient, especially the cold weather. While much effort has been made on organic electrolyte batteries operating at low temperatures, the study on low-temperature ARMBs is still in its infancy.

View Article and Find Full Text PDF

Traditional aqueous zinc-ion batteries (ZIBs) based on ion-intercalation or surface redox behaviors at the cathode side suffer severely from an unsatisfactory specific capacity and unstable output potential. Herein, these issues are applied to a conversion-type zinc-tellurium (Zn-Te) battery. Typically, this battery works based on a two-step solid-to-solid conversion with the successive formation of zinc ditelluride (ZnTe ) and zinc telluride (ZnTe).

View Article and Find Full Text PDF

Sulfur cathodes have been under intensive study in various systems, such as Li/S, Na/S, Mg/S, and Al/S batteries. However, to date, Zn/S chemistry has never been reported. The first reliable aqueous Zn/polysulfide system activated by a "liquid film" comprising 4-(3-butyl-1-imidazolio)-1-butanesulfoni ionic liquid (IL) encapsulated within PEDOT:PSS.

View Article and Find Full Text PDF

Nonmetallic ammonium (NH ) ions are applied as charge carriers for aqueous batteries, where hexagonal MoO is initially investigated as an anode candidate for NH storage. From experimental and first-principle calculated results, the battery chemistry proceeds with reversible building-breaking behaviors of hydrogen bonds between NH and tunneled MoO electrode frameworks, where the ammoniation/deammoniation mechanism is dominated by nondiffusion-controlled pseudocapacitive behavior. Outstanding electrochemical performance of MoO for NH storage is delivered with 115 mAh g at 1 C and can retain 32 mAh g at 150 C.

View Article and Find Full Text PDF

Building aqueous acidic batteries is in its infancy. There are several sporadic attempts that show desirable electrochemical performance, especially rate stability and high power density. The direct use of a metal anode is regarded as the best protocol for fabricating metal-based batteries.

View Article and Find Full Text PDF

Flexible aqueous Zn battery has exhibited great potential as a power source for flexible and wearable electronic devices due to its unique features, such as high safety, low cost, and eco-friendliness. Numerous studies on flexible Zn batteries have been reported and exciting achievements have been obtained in the past few years. However, there are still many problems in the electrode design and the assembly process to acquire desirable flexibility without sacrificing the capacity.

View Article and Find Full Text PDF

Flexible and wearable energy storage devices are receiving increasing attention with the ever-growing market of wearable electronics. Fiber-shaped batteries display a unique 1D architecture with the merits of superior flexibility, miniaturization potential, adaptability to deformation, and compatibility with the traditional textile industry, which are especially advantageous for wearable applications. In the recent research frontier in the field of fiber-shaped batteries, in addition to higher performance, advances in multifunctional, scalable, and integrable systems are also the main themes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlrkv4q0vn6s9421jsue4kdvgvipq8c14): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once