Mu opioid receptors are expressed throughout the central and peripheral nervous systems. Peripheral inflammation leads to an increase in mu receptor present on the peripheral terminals of primary sensory neurons. Activation of peripheral mu receptors produces potent antihyperalgesic effects in both humans and animals.
View Article and Find Full Text PDFHigh-resolution (500 MHz) multiresonance/multinuclear proton (1H) nuclear magnetic resonance (NMR) spectroscopy was used to detect metabolic changes and cellular injury in the rat brain stem and spinal cord following chronic morphine treatment. Compensatory changes were observed in glycine, glutamate, and inositols in the brain stem, but not the spinal cord, of chronic morphine-treated rats. In spinal cord, increases were detected in lactate and N-acetyl-aspartate (NAA), suggesting that there is anaerobic glycolysis, plasma membrane damage, and altered pH preferentially in the spinal cord of chronic morphine-treated rats.
View Article and Find Full Text PDFChronic inflammation induced by injection of complete Freund's adjuvant (CFA) into one hindpaw elicits thermal hyperalgesia and mechanical allodynia in the injected paw. Metabotropic glutamate receptors (mGluRs) have been implicated in dorsal horn neuronal nociceptive responses and pain associated with short-term inflammation. The goal of the present study was to assess the role of mGluR1 in the hyperalgesia and allodynia associated with the CFA model of chronic inflammation.
View Article and Find Full Text PDF1. Chronic systemic treatment of rats with morphine leads to the development of opioid tolerance. This study was designed to examine the effects of intrathecal (i.
View Article and Find Full Text PDFEvidence from the last several decades indicates that the excitatory amino acid glutamate plays a significant role in nociceptive processing. Glutamate and glutamate receptors are located in areas of the brain, spinal cord and periphery that are involved in pain sensation and transmission. Glutamate acts at several types of receptors, including ionotropic (directly coupled to ion channels) and metabotropic (directly coupled to intracellular second messengers).
View Article and Find Full Text PDF1. Nerve injury often produces long-lasting spontaneous pain, hyperalgesia and allodynia that are refractory to treatment, being only partially relieved by clinical analgesics, and often insensitive to morphine. With the aim of assessing its therapeutic potential, we examined the effect of antisense oligonucleotide knockdown of spinal metabotropic glutamate receptor 1 (mGluR(1)) in neuropathic rats.
View Article and Find Full Text PDFOpioid compounds with mixed mu agonist/delta antagonist properties are expected to be analgesics with low propensity to produce tolerance and dependence. In an effort to strengthen the mu agonist component of the mixed mu agonist/delta antagonist H-Tyr-Tic-Phe-Phe-NH(2) (TIPP-NH(2)), analogues containing structurally modified tyrosine residues in place of Tyr(1) were synthesized. Among the prepared compounds, H-Dmt-Tic-Phe-Phe-NH(2) (DIPP-NH(2); Dmt = 2',6'-dimethyltyrosine) and H-Dmt-TicPsi[CH(2)NH]Phe-Phe-NH(2) (DIPP-NH(2)[Psi]) retained a mixed mu agonist/delta antagonist profile, as determined in the guinea pig ileum and mouse vas deferens assays, whereas H-Tmt-Tic-Phe-Phe-NH(2) (Tmt = N,2',6'-trimethyltyrosine) was a partial mu agonist/delta antagonist and H-Tmt-TicPsi[CH(2)NH]Phe-Phe-NH(2) was a mu antagonist/delta antagonist.
View Article and Find Full Text PDFThe present study examined the effects of intrathecal (i.t.) treatment (twice-daily injections on post-operative (PO) days 0-8) with the metabotropic glutamate receptor (mGluR) compound, (S)-4-carboxyphenylglycine ((S)-4CPG), or the non-competitive N-methyl-D-aspartate (NMDA) antagonist, dizocilipine maleate (MK-801), on mechanical allodynia and cold hyperalgesia associated with chronic constriction injury (CCI) of the sciatic nerve in rats.
View Article and Find Full Text PDFTo examine the specific roles of group I metabotropic glutamate receptors (mGluRs) in nociceptive processing, we examined the effects of intrathecal (i.t.) treatment with antibodies raised against the C-terminals of mGluR1 and mGluR5 in various rat pain models.
View Article and Find Full Text PDF1. We have previously shown that chronic antagonism of group I metabotropic glutamate receptors (mGluRs), in the brain, attenuates the precipitated morphine withdrawal syndrome in rats. In the present investigation we assessed the effects of chronic antagonism of group II and III mGluRs on the severity of withdrawal symptoms in rats treated chronically with subcutaneous (s.
View Article and Find Full Text PDFWe have previously shown that chronic antagonism of metabotropic glutamate receptors in the brain attenuates naloxone-precipitated withdrawal symptoms in rats treated chronically with subcutaneous (s.c.) morphine.
View Article and Find Full Text PDF1. The contribution of various excitatory amino acid (EAA) receptors (NMDA, AMPA/kainate and metabotropic) in the brain to the development of morphine dependence was examined. This was performed by measuring the severity of the precipitated withdrawal syndrome following chronic subcutaneous (s.
View Article and Find Full Text PDFThe formalin test was developed using an ordinal scale of weighted scores to rate the intensity of pain-related behaviours in animals. However, no studies have been carried out to establish the ordinal relationship of the behavioural categories used to generate the weighted pain intensity scores. The purpose of the present study was to evaluate the validity of the weighted-scores technique by assessing the ordinality of the behavioural categories associated with the specific category weights.
View Article and Find Full Text PDFIt has been suggested that "phylogenetically prepared fear reactions" may be useful behavioral assays of the effects of anxiolytic agents. In the present experiments, rats' natural proclivity to stay near the perimeters of a novel environment (i.e.
View Article and Find Full Text PDFPharmacol Biochem Behav
August 1988
The effects of chlordiazepoxide (2.5-10.0 mg/kg IP) and buspirone (0.
View Article and Find Full Text PDF