In recent years, there has been a notable shift toward exploring plant and animal extracts for the fabrication of tissue engineering structures that seamlessly integrate with the human body, providing both biological compatibility and physical reinforcement. In this particular investigation, we synthesized bilayer wound dressings by incorporating snail () secretions, comprising mucus and slime, into chitosan matrices via lyophilization and electrospinning methodologies. A nanofiber layer was integrated on top of the porous structure to mimic the epidermal layer for keratinocyte activity as well as acting as an antibacterial barrier against possible infection, whereas a porous structure was designed to mimic the dermal microenvironment for fibroblast activity.
View Article and Find Full Text PDFOne of the key challenges in biofabrication applications is to obtain bioinks that provide a balance between printability, shape fidelity, cell viability, and tissue maturation. Decellularization methods allow the extraction of natural extracellular matrix, preserving tissue-specific matrix proteins. However, the critical challenge in bone decellularization is to preserve both organic (collagen, proteoglycans) and inorganic components (hydroxyapatite) to maintain the natural composition and functionality of bone.
View Article and Find Full Text PDFNowadays, antibiotic-loaded biomaterials have been widely used in wound healing applications. However, the use of natural extracts has come into prominence as an alternative to these antimicrobial agents in the recent period. Among natural sources, (CQ) herbal extract is used for treatment of bone and skin diseases in ayurvedic medicine due to its antibacterial and anti-inflammatory effects.
View Article and Find Full Text PDFRegeneration of osteochondral tissue with its layered complex structure and limited self-repair capacity has come into prominence as an application area for biomaterial design. Thus, literature studies have aimed to design multilayered scaffolds using natural polymers to mimic its unique structure. In this study, fabricated scaffolds are composed of transition layers both chemically and morphologically to mimic the gradient structure of osteochondral tissue.
View Article and Find Full Text PDFThe development of biomaterial inks suitable for biofabrication and mimicking the physicochemical properties of the extracellular matrix is essential for the application of bioprinting technology in tissue engineering (TE). The use of animal-derived proteinous materials, such as jellyfish collagen, or fish scale (FS) gelatin (GEL), has become an important pillar in biomaterial ink design to increase the bioactivity of hydrogels. However, besides the extraction of proteinous structures, the use of structurally intact FS as an additive could increase biocompatibility and bioactivity of hydrogels due to its organic (collagen) and inorganic (hydroxyapatite) contents, while simultaneously enhancing mechanical strength in three-dimensional (3D) printing applications.
View Article and Find Full Text PDFThree-dimensional (3D) printing technology enables the design of personalized scaffolds with tunable pore size and composition. Combining decellularization and 3D printing techniques provides the opportunity to fabricate scaffolds with high potential to mimic native tissue. The aim of this study is to produce novel decellularized bone extracellular matrix (dbECM)-reinforced composite-scaffold that can be used as a biomaterial for bone tissue engineering.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2021
Guided Bone Regeneration (GBR) is a widely used process for the treatment of periodontal defects to prevent the formation of surrounding soft tissue at the periodontal defect and to provide hard tissue regeneration. Recently GBR designs have focused on the development of resorbable natural polymer-based barrier membranes due to their biodegradability and excellent biocompatibility. The aim of this study is to fabricate a novel bilayer nanocomposite membrane with microporous sublayer composed of chitosan and Si doped nanohydroxyapatite particles (Si-nHap) and chitosan/PEO nanofiber upper layer.
View Article and Find Full Text PDFBiobased extracts comprise various bioactive components and they are widely used in tissue engineering applications to increase bioactivity as well as physical characteristics of biomaterials. Among animal sources, garden snailhas come into prominence with its antibacterial and regenerative extracts and show potential in tissue regeneration. Thus, in this study, bioactiveextracts (slime, mucus) were loaded in chitosan (CHI) matrix to fabricate porous scaffolds for hard tissue regeneration.
View Article and Find Full Text PDFJ Mater Sci Mater Med
December 2019
Recently, layered structures composed of nanofibers have gained attention as a novel material to mimic skin tissue in wound healing applications. The aim of this study is to develop a novel hybrid bilayer material composed of zein based composite film and nanofiber layers as a wound dressing material. The upper layer was composed of H.
View Article and Find Full Text PDFPolymer-based scaffolds have already gained popularity in many biomedical applications due to convenient routes for fabrication and favourable structural, physicochemical and functional characteristics. However, polymeric scaffolds lack osteoconductivity and some synthetic polymers carry the risk of inflammatory response caused by degradation by-products. Those facts limit their practical use in bone tissue engineering.
View Article and Find Full Text PDFPOSS, regarded as the smallest silica particle, is widely used as nanofiller in polymer systems. POSS-based nanocomposites are deduced as novel materials having potency for biomedical applications owing to the enhanced biocompatibility and physicochemical characteristics. The aim of this work was to integrate the beneficial features of chitosan (CS) and OctaTMA-POSS nanoparticle to design nanocomposite for bone tissue regeneration.
View Article and Find Full Text PDFDespite the advancements in bone transplantation operations, inflammation is still a serious problem that threatens human health at the post-implantation period. Conventional antibiotic therapy methods may lead to some side effects such as ototoxicity and nephrotoxicity, especially when applied in high doses. Therefore, local drug delivery systems play a vital role in bone disorders due to the elimination of the disadvantages introduced by conventional methods.
View Article and Find Full Text PDFOsteochondral tissue is hard to regenerate after injuries or degenerative diseases. Traditional treatments still have disadvantages, such as donor tissue availability, donor site morbidity, implant loss, and limited durability of prosthetics. Thus, recent studies have focused on tissue engineering strategies to regenerate osteochondral defects with different scaffold designs.
View Article and Find Full Text PDFRecently, natural polymers are reinforced with silica particles for hard tissue engineering applications to induce bone regeneration. In this study, as two novel bioactive agents, effects of diatomite and polyhedral oligomeric silsesquioxanes (POSS) on chitosan (CS)/Na-carboxymethylcellulose (Na-CMC) polymer blend scaffolds are examined. In addition, the effect of silica reinforcements was compared with Si-substituted nano-hydroxyapatite (Si-Hap) particles.
View Article and Find Full Text PDFRecently, biologically active natural macromolecules have come into prominence to be used as potential materials in scaffold design due to their unique characteristics which can mimic the human tissue structure with their physical and chemical similarity. Among them, fish scale (FS) is a biologically active material with its structural similarity to bone tissue due to including type I collagen and hydroxyapatite and also have distinctive collagen arrangement. In the present study, it is aimed to design a novel composite scaffold with FS incorporation into chitosan (CH) matrix for bone tissue regeneration.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
August 2019
Recently, functional multilayer scaffolds with controlled drug release ability come into prominence for wound healing applications to mimic the layered structure of skin tissue and prevent the possible infections at the defect site. In this study, controlled antibiotic releasing zein bilayer membranes were fabricated for treatment of acute skin infections. Gentamicin loaded fibers were prepared by electrospinning on the membrane surface.
View Article and Find Full Text PDFRecently, usage of marine-derived materials in biomedical field has come into prominence due to their promising characteristics such as biocompatibility, low immunogenicity and wide accessibility. Among these marine sources, cuttlebone has been used as a valuable component with its trace elemental composition in traditional medicine. Recent studies have focused on the use of cuttlebone as a bioactive agent for tissue engineering applications.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2018
As a natural and abundant silica mineral, diatomite particles (SiO-nHO) have been used in several areas such as filtration, photonics, sound and heat insulation, filler material and drug delivery due to its abundance, inexpensive cost, unique morphology and porous structure. But up to date, diatomite incorporated silica based scaffolds have not been used for bone tissue engineering applications. In the present study, the goal was to combine the useful biomaterial properties of both chitosan and diatomite as biocomposite organic/inorganic biomaterial for bone tissue engineering applications and optimize the silica content of the composites in order to obtain optimum morphological structure, high mechanical properties, enlarged surface area and enhanced cell proliferation.
View Article and Find Full Text PDFJ Mater Sci Mater Med
December 2017
In this study, novel composites membranes composed of chitosan matrix and polyhedral oligomeric silsesquioxanes (POSS) were fabricated by solvent casting method. The effect of POSS loading on the mechanical, morphological, chemical, thermal and surface properties, and cytocompatibility of composite membranes were investigated and observed by tensile test, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), protein adsorption assay, air/water contact angle analysis and WST-1 respectively. Swelling studies were also performed by water absorption capacity determination.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2017
In this study, natural silica source, diatomite, incorporated novel chitosan based composite membranes were fabricated and characterized for bone tissue engineering applications as possible bone regeneration membrane. The effect of diatomite loading on the mechanical, morphological, chemical, thermal and surface properties, wettability and in vitro cytotoxicity and cell proliferation on of composite membranes were investigated and observed by tensile test, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), protein adsorption assay, air/water contact angle analysis and WST-1 respectively. Swelling studies were also performed by water absorption capacity determination.
View Article and Find Full Text PDFInt J Biol Macromol
September 2017
Recent studies in wound dressing applications offer new therapies and promote wound healing process. The aim of this study was to develop Hypericum perforatum (St John's Wort) oil incorporated chitosan films for wound dressing applications. H.
View Article and Find Full Text PDFChitosan films incorporated with thyme oil for potential applications of wound dressing were successfully prepared by solvent casting method. The water vapor permeability, oxygen transmission rate, and mechanical properties of the films were determined. Surface and cross-section morphologies and the film thicknesses were determined by Scanning Electron Microscopy (SEM).
View Article and Find Full Text PDF