Type 2 diabetes (T2D) is posing a serious public health concern with a considerable impact on human life and health expenditures worldwide. The disease develops when insulin plasma level is insufficient for coping insulin resistance, caused by the decline of pancreatic β-cell function and mass. In β-cells, the lipotoxicity exerted by saturated free fatty acids in particular palmitate (PA), which is chronically elevated in T2D, plays a major role in β-cell dysfunction and mass.
View Article and Find Full Text PDFRecent advancements in bioengineering have introduced potential alternatives to liver transplantation via the development of self-assembled liver organoids, derived from human-induced pluripotent stem cells (hiPSCs). However, the limited maturity of the tissue makes it challenging to implement this technology on a large scale in clinical settings. In this study, we developed a highly efficient method for generating functional liver organoids from hiPSC-derived carboxypeptidase M liver progenitor cells (CPM+ LPCs), using a microwell structure, and enhanced maturation through direct oxygenation in oxygen-permeable culture plates.
View Article and Find Full Text PDFCorrection for 'Generation of β-like cell subtypes from differentiated human induced pluripotent stem cells in 3D spheroids' by Lisa Morisseau , , 2023, https://doi.org/10.1039/d3mo00050h.
View Article and Find Full Text PDFSince the identification of four different pancreatic β-cell subtypes and bi-hormomal cells playing a role in the diabetes pathogenesis, the search for models that mimics such cells heterogeneity became a key priority in experimental and clinical diabetology. We investigated the potential of human induced pluripotent stem cells to lead to the development of the different β-cells subtypes in honeycomb microwell-based 3D spheroids. The glucose-stimulated insulin secretion confirmed the spheroids functionality.
View Article and Find Full Text PDFFunctional differentiation of pancreatic like tissue from human induced pluripotent stem cells is one of the emerging strategies to achieve an pancreas model. Here, we propose a protocol to cultivate hiPSC-derived β-like-cells coupling spheroids and microfluidic technologies to improve the pancreatic lineage maturation. The protocol led to the development of spheroids producing the C-peptide and containing cells positive to insulin and glucagon.
View Article and Find Full Text PDFThe liver plays a pivotal role in the clearance of drugs. Reliable assays for liver function are crucial for various metabolism investigation, including toxicity, disease, and pre-clinical testing for drug development. Bile is an aqueous secretion of a functioning liver.
View Article and Find Full Text PDFIn situ continuous glucose monitoring under physiological culture conditions is imperative in understanding the dynamics of cell and tissue behaviors and their physiological responses since glucose plays an important role in principal source of biological energy. We therefore examined physiologically relevant dynamic changes in glucose levels based on glucose metabolism and production during aerobic culture (10% O) of rat primary hepatocytes stimulated with insulin or glucagon on a highly O permeable plate, which can maintain the oxygen concentration close to the periportal zone of the liver. As glucose monitoring devices, we used oxygen-independent glucose dehydrogenase-modified single-walled carbon nanotube electrodes placed close to the surface of the hepatocytes.
View Article and Find Full Text PDFTransplantation of macroencapsulated pancreatic islets within semipermeable membranes is a promising approach for the treatment of type 1 diabetes. Encapsulation beneficially isolates the implants from the host immune system. Deleteriously however, it also limits oxygen supply to the cells.
View Article and Find Full Text PDF