Publications by authors named "Fumiya Osawa"

Rapid and sensitive detection of virus-related antigens and antibodies is crucial for controlling sudden seasonal epidemics and monitoring neutralizing antibody levels after vaccination. However, conventional detection methods still face challenges related to compatibility with rapid, highly sensitive, and compact detection apparatus. In this work, we developed a Si nanowire (SiNW)-based field-effect biosensor by precisely controlling the process conditions to achieve the required electrical properties via complementary metal-oxide-semiconductor (CMOS)-compatible nanofabrication processes.

View Article and Find Full Text PDF

Organic light-emitting diodes (OLEDs) using thermally activated delayed fluorescence (TADF) materials have advantages over OLEDs using conventional fluorescent materials or high-cost phosphorescent materials, including higher efficiency and lower cost. To attain further high device performance, clarifying internal charge states in OLEDs at a microscopic viewpoint is crucial; however, only a few such studies have been performed. Here, we report a microscopic investigation into internal charge states in OLEDs with a TADF material by electron spin resonance (ESR) at a molecular level.

View Article and Find Full Text PDF

Silicon nanowire (SiNW) biosensors have attracted a lot of attention due to their superior sensitivity. Recently, the dependence of biomolecule detection sensitivity on the nanowire (NW) width, number, and doping density has been partially investigated. However, the primary reason for achieving ultrahigh sensitivity has not been elucidated thus far.

View Article and Find Full Text PDF

Spin-states and charge-trappings in blue organic light-emitting diodes (OLEDs) are important issues for developing high-device-performance application such as full-color displays and white illumination. However, they have not yet been completely clarified because of the lack of a study from a microscopic viewpoint. Here, we report operando electron spin resonance (ESR) spectroscopy to investigate the spin-states and charge-trappings in organic semiconductor materials used for blue OLEDs such as a blue light-emitting material 1-bis(2-naphthyl)anthracene (ADN) using metal-insulator-semiconductor (MIS) diodes, hole or electron only devices, and blue OLEDs from the microscopic viewpoint.

View Article and Find Full Text PDF