Publications by authors named "Fumitoshi Irie"

Transmembrane protein 2 (TMEM2) was originally identified as a membrane-anchored protein of unknown function. We previously demonstrated that TMEM2 can degrade hyaluronan (HA). Furthermore, we showed that induced global knockout of Tmem2 in adult mice results in rapid accumulation of incompletely degraded HA in bodily fluids and organs, supporting the identity of TMEM2 as a cell surface hyaluronidase.

View Article and Find Full Text PDF

Hyaluronan (HA) is a major extracellular matrix component whose tissue levels are dynamically regulated during embryonic development. Although the synthesis of HA has been shown to exert a substantial influence on embryonic morphogenesis, the functional importance of the catabolic aspect of HA turnover is poorly understood. Here, we demonstrate that the transmembrane hyaluronidase TMEM2 plays an essential role in neural crest development and the morphogenesis of neural crest derivatives, as evidenced by the presence of severe craniofacial abnormalities in Wnt1-Cre-mediated Tmem2 knockout (Tmem2CKO) mice.

View Article and Find Full Text PDF

As a major component of the extracellular matrix, hyaluronan (HA) plays an important role in defining the biochemical and biophysical properties of tissues. In light of the extremely rapid turnover of HA and the impact of this turnover on HA biology, elucidating the molecular mechanisms underlying HA catabolism is key to understanding the in vivo functions of this unique polysaccharide. Here, we show that TMEM2, a recently identified cell surface hyaluronidase, plays an essential role in systemic HA turnover.

View Article and Find Full Text PDF

Heparan sulfate (HS), a highly sulfated linear polysaccharide, is involved in diverse biological functions in various tissues. Although previous studies have suggested a possible contribution of HS to the differentiation of white adipocytes, there has been no direct evidence supporting this. Here, we inhibited the synthesis of HS chains in 3T3-L1 cells using CRISPR-Cas9 technology, resulting in impaired differentiation of adipocytes with attenuated bone morphogenetic protein 4 (BMP4)-fibroblast growth factor 1 (FGF1) signaling pathways.

View Article and Find Full Text PDF

The extracellular matrix (ECM) plays an important role in maintaining tissue homeostasis and poses a significant physical barrier to in vivo cell migration. Accordingly, as a means of enhancing tissue invasion, tumor cells use matrix metalloproteinases to degrade ECM proteins. However, the in vivo ECM is comprised not only of proteins but also of a variety of nonprotein components.

View Article and Find Full Text PDF

Brain white matter is the means of efficient signal propagation in brain and its dysfunction is associated with many neurological disorders. We studied the effect of hyaluronan deficiency on the integrity of myelin in murine corpus callosum. Conditional knockout mice lacking the hyaluronan synthase 2 were compared with control mice.

View Article and Find Full Text PDF

Hyaluronan (HA) is a glycosaminoglycan (GAG) composed of repeating disaccharide units of glucuronic acid and N-acetylglucosamine. HA is an extremely long, unbranched polymer, which often exceeds 10 Da and sometimes reaches 10 Da. A feature that epitomizes HA is its rapid turnover; one-third of the total body HA is turned over daily.

View Article and Find Full Text PDF

Bone remodeling is a highly coordinated process involving bone formation and resorption, and imbalance of this process results in osteoporosis. It has long been recognized that long-term heparin therapy often causes osteoporosis, suggesting that heparan sulfate (HS), the physiological counterpart of heparin, is somehow involved in bone mass regulation. The role of endogenous HS in adult bone, however, remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple hereditary exostoses (MHE), also known as multiple osteochondromas, is a genetic disorder leading to multiple bone tumors due to mutations in the EXT1 or EXT2 gene, affecting cartilage growth.
  • Research shows that enhanced bone morphogenetic protein (BMP) signaling, caused by reduced heparan sulfate expression, contributes to the formation of these tumors in MHE.
  • Palovarotene (PVO), a drug candidate previously tested for another bone disorder, significantly reduced osteochondroma formation in mouse models of MHE, suggesting its potential as a therapy for this condition.
View Article and Find Full Text PDF

Multiple hereditary exostoses (MHE) is characterized by the development of numerous benign bony tumors (osteochondromas). Although it has been well established that MHE is caused by mutations in EXT1 and EXT2, which encode glycosyltransferase essential for heparan sulfate (HS) biosynthesis, the cellular origin and molecular mechanisms of MHE remain elusive. Here, we show that in Ext1 mutant mice, osteochondromas develop from mesenchymal stem cell-like progenitor cells residing in the perichondrium, and we show that enhanced BMP signaling in these cells is the primary signaling defect that leads to osteochondromagenesis.

View Article and Find Full Text PDF

Hyaluronan (HA) is an extremely large polysaccharide (glycosaminoglycan) involved in many cellular functions. HA catabolism is thought to involve the initial cleavage of extracellular high-molecular-weight (HMW) HA into intermediate-size HA by an extracellular or cell-surface hyaluronidase, internalization of intermediate-size HA, and complete degradation into monosaccharides in lysosomes. Despite considerable research, the identity of the hyaluronidase responsible for the initial HA cleavage in the extracellular space remains elusive.

View Article and Find Full Text PDF

Hyaluronan (HA), a large anionic polysaccharide (glycosaminoglycan), is a major constituent of the extracellular matrix of the adult brain. To address its function, we examined the neurophysiology of knock-out mice deficient in hyaluronan synthase (Has) genes. Here we report that these Has mutant mice are prone to epileptic seizures, and that in Has3(-/-) mice, this phenotype is likely derived from a reduction in the size of the brain extracellular space (ECS).

View Article and Find Full Text PDF

Heparan sulfate regulates diverse cell-surface signaling events, and its roles in the development of the nervous system recently have been increasingly uncovered by studies using genetic models carrying mutations of genes encoding enzymes for its synthesis. On the other hand, the role of heparan sulfate in the physiological function of the adult brain has been poorly characterized, despite several pieces of evidence suggesting its role in the regulation of synaptic function. To address this issue, we eliminated heparan sulfate from postnatal neurons by conditionally inactivating Ext1, the gene encoding an enzyme essential for heparan sulfate synthesis.

View Article and Find Full Text PDF

PURPOSE. Heparan sulfate (HS) is abundantly expressed in the developing neural retina; however, its role in the intraretinal axon guidance of retinal ganglion cells (RGCs) remains unclear. In this study, the authors examined whether HS was essential for the axon guidance of RGCs toward the optic nerve head.

View Article and Find Full Text PDF

Bax-Inhibitor-1 (BI-1) is an evolutionarily conserved cytoprotective protein that resides in membranes of the endoplasmic reticulum (ER). BI-1's cytoprotective activity is manifested in the context of ER stress, with previous studies showing that BI-1 modulates several ER-associated functions, including Unfolded Protein Response (UPR) signaling. Here we investigated the role of BI-1 in neuroprotection by generating transgenic mice in which BI-1 was constitutively expressed from a neuronal-specific promoter.

View Article and Find Full Text PDF

Development of the mammalian central nervous system proceeds roughly in four major steps, namely the patterning of the neural tube, generation of neurons from neural stem cells and their migration to genetically predetermined destinations, extension of axons and dendrites toward target neurons to form neural circuits, and formation of synaptic contacts. Earlier studies on spatiotemporal expression patterns and in vitro function of heparan sulfate (HS) suggested that HS is functionally involved in various aspects of neural development. Recent studies using knockout of genes involved in HS biosynthesis have provided more physiologically relevant information as to the role of HS in mammalian neural development.

View Article and Find Full Text PDF

Multiple hereditary exostoses (MHE) is one of the most common skeletal dysplasias, exhibiting the formation of multiple cartilage-capped bony protrusions (osteochondroma) and characteristic bone deformities. Individuals with MHE carry heterozygous loss-of-function mutations in Ext1 or Ext2, genes which together encode an enzyme essential for heparan sulfate synthesis. Despite the identification of causative genes, the pathogenesis of MHE remains unclear, especially with regard to whether osteochondroma results from loss of heterozygosity of the Ext genes.

View Article and Find Full Text PDF

Increasing evidence indicates that heparan sulfate (HS) is an integral component of many morphogen signaling pathways. However, its mechanisms of action appear to be diverse, depending on the type of morphogen and the developmental contexts. To define the function of HS in skeletal development, we conditionally ablated Ext1, which encodes an essential glycosyltransferase for HS synthesis, in limb bud mesenchyme using the Prx1-Cre transgene.

View Article and Find Full Text PDF

During human embryogenesis, neural crest cells migrate to the anterior chamber of the eye and then differentiate into the inner layers of the cornea, the iridocorneal angle, and the anterior portion of the iris. When proper development does not occur, this causes iridocorneal angle dysgenesis and intraocular pressure (IOP) elevation, which ultimately results in developmental glaucoma. Here, we show that heparan sulfate (HS) deficiency in mouse neural crest cells causes anterior chamber dysgenesis, including corneal endothelium defects, corneal stroma hypoplasia, and iridocorneal angle dysgenesis.

View Article and Find Full Text PDF

Increasing evidence indicates that many signaling pathways involve not only ligands and receptors but also various types of coreceptors and matrix components as additional layers of regulation. Signaling by Eph receptors and their ephrin ligands plays a key role in a variety of biological processes, such as axon guidance and topographic map formation, synaptic plasticity, angiogenesis, and cancer. Little is known about whether the ephrin-Eph receptor signaling system is subject to such additional layers of regulation.

View Article and Find Full Text PDF

There is increasing evidence that heparan sulfate (HS) plays an essential role in various axon guidance processes. These observations, however, have not addressed whether HS is required cell autonomously as an axonal coreceptor or as an environmental factor that modulates the localization of guidance molecules in the terrain in which growing axons navigate. Here we demonstrate that netrin-1-mediated commissural axon guidance requires cell-autonomous expression of HS in commissural neurons in vivo.

View Article and Find Full Text PDF

Recent studies show that Eph receptors act mainly through the regulation of actin reorganization. Here, we show a novel mode of action for EphB receptors. We identify synaptojanin 1 - a phosphatidylinositol 5'-phosphatase that is involved in clathrin-mediated endocytosis - as a physiological substrate for EphB2.

View Article and Find Full Text PDF

Dendritic spines are small bulbous protrusions on the surface of dendrites that serve as principle postsynaptic targets for excitatory synapses (1-3). Structural modifications of dendritic spines have been implicated as a cellular basis for learning and memory. Morphological abnormalities of spines are observed in some neurological diseases such as mental retardation and schizophrenia (4).

View Article and Find Full Text PDF

Heparan sulfate (HS) is required for morphogen signaling during Drosophila pattern formation, but little is known about its physiological importance in mammalian development. To define the developmental role of HS in mammalian species, we conditionally disrupted the HS-polymerizing enzyme EXT1 in the embryonic mouse brain. The EXT1-null brain exhibited patterning defects that are composites of those caused by mutations of multiple HS-binding morphogens.

View Article and Find Full Text PDF

Communication between glial cells and neurons is emerging as a critical parameter of synaptic function. However, the molecular mechanisms underlying the ability of glial cells to modify synaptic structure and physiology are poorly understood. Here we describe a repulsive interaction that regulates postsynaptic morphology through the EphA4 receptor tyrosine kinase and its ligand ephrin-A3.

View Article and Find Full Text PDF