Publications by authors named "Fumio Matsuzaki"

Purpose: Among the genome-editing methods for repairing disease-causing mutations resulting in autosomal dominant retinitis pigmentosa, homology-independent targeted integration (HITI)-mediated gene insertion of the normal form of the causative gene is useful because it allows the development of mutation-agnostic therapeutic products. In this study, we aimed for the rapid optimization and validation of HITI-treatment gene constructs of this approach in developing HITI-treatment constructs for various causative target genes in mouse models of retinal degeneration.

Methods: We constructed the Cas9-driven HITI gene cassettes in plasmid vectors to treat the mouse Rho gene.

View Article and Find Full Text PDF

The diversity of neural stem cells is a hallmark of the cerebral cortex development in gyrencephalic mammals, such as Primates and Carnivora. Among them, ferrets are a good model for mechanistic studies. However, information on their neural progenitor cells (NPC), termed radial glia (RG), is limited.

View Article and Find Full Text PDF

Lymphatic vessels are crucial for tissue homeostasis and immune responses in vertebrates. Recent studies have demonstrated that lymphatic endothelial cells (LECs) arise from both venous sprouting (lymphangiogenesis) and de novo production from non-venous origins (lymphvasculogenesis), which is similar to blood vessel formation through angiogenesis and vasculogenesis. However, the contribution of LECs from non-venous origins to lymphatic networks is considered to be relatively small.

View Article and Find Full Text PDF

The cerebral cortex is formed by diverse neurons generated sequentially from neural stem cells (NSCs). A clock mechanism has been suggested to underlie the temporal progression of NSCs, which is mainly defined by the transcriptome and the epigenetic state. However, what drives such a developmental clock remains elusive.

View Article and Find Full Text PDF

Developments in genome-editing technology, especially CRISPR-Cas9, have revolutionized the way in which genetically engineered animals are generated. However, the process of generation includes microinjection to the one-cell stage embryo and the transfer of the microinjected embryo to the surrogate animals, which requires trained personnel. We recently reported the method includes introduction of CRISPR-Cas9 systems to the developing cerebral cortex via in utero electroporation thus generating gene-targeted neural stem cells in vivo.

View Article and Find Full Text PDF

Blood and lymphatic vessels surrounding the heart develop through orchestrated processes from cells of different origins. In particular, cells around the outflow tract which constitute a primordial transient vasculature, referred to as aortic subepicardial vessels, are crucial for the establishment of coronary artery stems and cardiac lymphatic vessels. Here, we revealed that the epicardium and pericardium-derived Semaphorin 3E (Sema3E) and its receptor, PlexinD1, play a role in the development of the coronary stem, as well as cardiac lymphatic vessels.

View Article and Find Full Text PDF

During mammalian corticogenesis, Notch signaling is essential to maintain neural stem cells called radial glial cells (RGCs) and the cortical architecture. Because the conventional knockout of either Notch1 or Notch2 causes a neuroepithelial loss prior to neurogenesis, their functional relationship in RGCs remain elusive. Here, we investigated the impacts of single knockout of Notch1 and Notch2 genes, and their conditional double knockout (DKO) on mouse corticogenesis.

View Article and Find Full Text PDF

Blood and lymphatic vessels structurally bear a strong resemblance but never share a lumen, thus maintaining their distinct functions. Although lymphatic vessels initially arise from embryonic veins, the molecular mechanism that maintains separation of these two systems has not been elucidated. Here, we show that genetic deficiency of Folliculin, a tumor suppressor, leads to misconnection of blood and lymphatic vessels in mice and humans.

View Article and Find Full Text PDF
Article Synopsis
  • - The organization of cells into periodic patterns is essential for the proper function of various organs, and this process is typically facilitated by intercellular signaling.
  • - This study examines how the arrangement of hair cells and supporting cells in the organ of Corti (part of the mammalian ear) shifts from a disordered state to an ordered checkerboard pattern, attributing this change to mechanical forces rather than signaling mechanisms.
  • - Through time-lapse imaging of mouse cochlear tissue and mechanical modeling, the research shows that the transition to an ordered pattern is driven by global shear forces and local repulsion among hair cells, likening this process to phenomena observed in materials like polymers and granular substances.
View Article and Find Full Text PDF

Brain structures are diverse among species despite the essential molecular machinery of neurogenesis being common. Recent studies have indicated that differences in the mechanical properties of tissue may result in the dynamic deformation of brain structure, such as folding. However, little is known about the correlation between mechanical properties and species-specific brain structures.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is primarily linked to the toxic β-amyloid peptide from the cleavage of the β-amyloid protein precursor (APP), with unclear mechanisms behind this process, except in familial cases caused by specific gene mutations.
  • The protein Alcadein α/calsyntenin1 (ALCα) interacts with APP through the adaptor protein X11-like (X11L), which helps suppress the production of β-amyloid; however, the role of ALCα specifically in APP metabolism was previously not well understood.
  • Research involving ALCα-deficient mice showed that the lack of ALCα leads to increased amyloidogenic processing of APP, more generation of β-amyloid, and the formation
View Article and Find Full Text PDF

The field of genome editing was founded on the establishment of methods, such as the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR/Cas) system, used to target DNA double-strand breaks (DSBs). However, the efficiency of genome editing also largely depends on the endogenous cellular repair machinery. Here, we report that the specific modulation of targeting vectors to provide 3' overhangs at both ends increased the efficiency of homology-directed repair (HDR) in embryonic stem cells.

View Article and Find Full Text PDF

Background: During development, Cajal-Retzius (CR) cells are the first generated and essential pioneering neurons that control neuronal migration and arealization in the mammalian cortex. CR cells are derived from specific regions within the telencephalon, that is, the pallial septum in the rostromedial cortex, the pallial-subpallial boundary, and the cortical hem (CH) in the caudomedial cortex. However, the molecular mechanism underlying the generation of CR cell subtypes in distinct regions of origin is poorly understood.

View Article and Find Full Text PDF

Neural stem cells, called radial glia, maintain epithelial structure during the early neocortical development. The prevailing view claims that when radial glia first proliferate, their symmetric divisions require strict spindle orientation; its perturbation causes precocious neurogenesis and apoptosis. Here, we show that despite this conventional view, radial glia at the proliferative stage undergo normal symmetric divisions by regenerating an apical endfoot even if it is lost by oblique divisions.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how DM domain factors (Dmrt) shape the identity of neural progenitors in the developing cerebral cortex, which is crucial for proper brain structure.
  • Dmrt genes show a unique expression gradient in the dorsal telencephalon, and their loss can cause dorsal progenitors to take on a ventral identity, leading to abnormal neuron production.
  • The research indicates that the levels of Dmrt genes affect the characteristics of progenitors, as well as their regulatory interactions with other genes, determining their positional identity during brain development.
View Article and Find Full Text PDF

Cellular polarization is fundamental for various biological processes. The Par network system is conserved for cellular polarization. Its core complex consists of Par3, Par6, and aPKC.

View Article and Find Full Text PDF

The origin of the mammalian lymphatic vasculature has been studied for more than a century; however, details regarding organ-specific lymphatic development remain unknown. A recent study reported that cardiac lymphatic endothelial cells (LECs) stem from venous and non-venous origins in mice. Here, we identified Isl1-expressing progenitors as a potential non-venous origin of cardiac LECs.

View Article and Find Full Text PDF

The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate.

View Article and Find Full Text PDF

In many cell types, mitotic spindle orientation relies on the canonical "LGN complex" composed of Pins/LGN, Mud/NuMA, and Gα subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3.

View Article and Find Full Text PDF

Erythroid enucleation is the process by which the future red blood cell disposes of its nucleus prior to entering the blood stream. This key event during red blood cell development has been likened to an asymmetric cell division (ACD), by which the enucleating erythroblast divides into two very different daughter cells of alternate molecular composition, a nucleated cell that will be removed by associated macrophages, and the reticulocyte that will mature to the definitive erythrocyte. Here we investigated gene expression of members of the Par, Scribble and Pins/Gpsm2 asymmetric cell division complexes in erythroid cells, and functionally tested their role in erythroid enucleation in vivo and ex vivo.

View Article and Find Full Text PDF

Organoids mimicking the formation of the brain cortex have been demonstrated to be powerful tools for developmental studies as well as pathological investigations of brain malformations. Here, we report an integrated approach for the quantification of temporal neural production (neurogenic rate) in organoids derived from embryonic brains. Spherical tissue fragments with polarized cytoarchitectures were incubated in multiple cavities arranged in a polymethylmethacrylate chip.

View Article and Find Full Text PDF

The precise control of neuronal migration and morphological changes during differentiation is essential for neocortical development. We hypothesized that the transition of progenitors through progressive stages of differentiation involves dynamic changes in levels of mitochondrial reactive oxygen species (mtROS), depending on cell requirements. We found that progenitors had higher levels of mtROS, but that these levels were significantly decreased with differentiation.

View Article and Find Full Text PDF

Neural stem cells go through a sequence of timely regulated gene expression and pattern of division mode to generate diverse neurons during brain development. During vertebrate cerebral cortex development, neural stem cells begin with proliferative symmetric divisions, subsequently undergo neurogenic asymmetric divisions, and finally gliogenic divisions. In this review, we explore the relationship between stem cell versus neural fate specification and the division mode.

View Article and Find Full Text PDF