Publications by authors named "Fuming Wang"

Dual-ion batteries (DIBs) are garnering immense attention for their capability to operate without the expensive elements required by lithium-ion batteries. Phenylenediamine serves as a versatile and sustainable resource, enabling the efficient preparation of both cathode and anode materials through precise molecular control and straightforward synthesis. The innovative asymmetrical DIBs based on amine-rich poly(phenylenediamine) cathodes and imine-rich poly(phenylenediamine) anodes enable oxidative and reductive states, providing a transition metal-free rechargeable battery.

View Article and Find Full Text PDF

Non-physiological disorders release dopamine into extracellular brain fluid to induce neurodegenerative brain diseases. The harmful mechanism of dopamine overflow is attributed to the dopamine-mediated production of hydroxyl radicals, suggesting that transition metal copper which is high in the brain is involved in promoting dopamine oxidation. MPP+ , an intermediate formed from the conversion of MPTP, is one of the most potent dopamine-releasing agents.

View Article and Find Full Text PDF

Rationale: Complex vesicovaginal fistulas (VVFs) with large defects pose significant surgical challenges. Traditional repair methods often require extensive tissue separation and multilayer suturing, risking local blood supply and healing. This study introduces a novel modified transvaginal repair technique that simplifies the procedure while preserving tissue vascularity.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are excellent precursors for preparing transition metal and nitrogen co-doped carbon catalysts, which have been widely utilized in the field of electrocatalysis since their initial development. However, the original MOFs derived catalysts have been greatly limited in their development and application due to their disadvantages such as metal atom aggregation, structural collapse, and narrow pore channels. Recently, surfactants-assisted MOFs derived catalysts have attracted much attention from researchers due to their advantages such as hierarchical porous structure, increased specific surface area, and many exposed active sites.

View Article and Find Full Text PDF

Background: With the aging population, patients with lower urinary tract symptoms/benign prostatic hyperplasia (LUTS/BPH) often face multiple chronic conditions (multimorbidity), significantly impacting their quality of life. This study aims to determine the relationship between LUTS/BPH, multimorbidity, and various chronic diseases in middle-aged and elderly Chinese populations.

Methods: This cross-sectional study utilizes data from the China Health and Retirement Longitudinal Study (CHARLS), involving 6,645 residents aged 45 and above.

View Article and Find Full Text PDF
Article Synopsis
  • Photothermal therapy for cancer has benefits like deep tissue penetration and non-invasive treatment, but creating effective agents for this therapy using NIR-II light is challenging.
  • A new strategy involving surface modification of vanadium carbide MXene nanosheets (L-VC) improves their photothermal performance and adds the ability for magnetic resonance imaging through a MnO coating.
  • The modified nanosheets (LVM-PEG) can effectively attack cancer cells in combination with NIR-II laser treatment, enhancing the immune response and providing a promising approach for cancer therapy using MXene-based materials.
View Article and Find Full Text PDF

Microbial induced concrete corrosion (MICC) is the primary deterioration affecting global sewers. Disentangling ecological mechanisms in the sewer system is meaningful for implementing policies to protect sewer pipes using trenchless technology. It is necessary to understand microbial compositions, interaction networks, functions, alongside assembly processes in sewer microbial communities.

View Article and Find Full Text PDF

Introduction: Following the conservation of resource theory and natural stress reduction theory, the current study investigated mediated pathways, reverse mediated pathways, and reciprocal pathways between connectedness to nature, depressive symptoms, and adolescent learning burnout via a half-longitudinal analysis, and discussed gender differences in the three models.

Methods: Two waves of data were collected in December 2022 (T1) and June 2023 (T2) for this study. The sample consisted of 1092 Chinese adolescents (52.

View Article and Find Full Text PDF

Antibacterial and active packaging materials have gained significant research attention in response to the growing interest in food packaging. In this investigation, we developed hydrogel packaging materials with antibacterial and antioxidant properties by incorporating chitooligosaccharide (COS) and fish skin gelatin (FSG) nanofiber membranes, which readily absorbed water and exhibited swelling characteristics. The nanofiber membranes were fabricated by electrospinning technology, embedding COS within FSG, and subsequently crosslinked through the Maillard reaction facilitated by the addition of glucose.

View Article and Find Full Text PDF

(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol in tea and exerts several health-promoting effects. It easily autoxidizes into complex polymers and becomes deactivated due to the presence of multiple phenolic hydroxyl structures. Nonetheless, the morphology and biological activity of complex EGCG polymers are yet to be clarified.

View Article and Find Full Text PDF

Green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) has been well studied for its biological activities in the prevention of chronic diseases. However, the biological activities of EGCG oxidation-derived polymers remain unclear. Previously, we found that these polymers accumulated in intraperitoneal tissues after intraperitoneal injection and gained an advantage over native EGCG in increasing insulin sensitivity regulating the renin-angiotensin system (RAS) in type 2 diabetic mice.

View Article and Find Full Text PDF

Sewer systems play vital roles in wastewater treatment facilities, and the microbial communities contribute significantly to the transformation of domestic wastewater. Therefore, this study conducted a 180-day experiment on a sewer system and utilized the high-throughput sequencing technology to characterize the microbial communities. Additionally, community assembly analysis was performed to understand the early-stage dynamics within the sewer system.

View Article and Find Full Text PDF

Background: The network meta-analysis (NMA) investigated the efficacy of six food supplements, namely glutamine, arginine, lactoferrin, prebiotics, synbiotics, and probiotics, in preventing necrotizing enterocolitis in premature infants.

Methods: MEDLINE, Embase, and Cochrane Library were searched. Randomized controlled trials comparing different food supplements for premature infants were included.

View Article and Find Full Text PDF

Three-dimensional (3D) printing is a versatile manufacturing method widely used in various industries due to its design flexibility, rapid production, and mechanical strength. Polyurethane (PU) is a biopolymer frequently employed in 3D printing applications, but its susceptibility to UV degradation limits its durability. To address this issue, various additives, including graphene, have been explored to enhance PU properties.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the efficacy of computed tomography (CT) guided percutaneous cryoablation (CA) for the management of lung metastases in patients with metastatic colorectal cancer (mCRC).

Methods: Retrospective analysis was performed on 38 mCRC patients with lung metastases, who underwent CT-guided percutaneous CA at our center from May 1, 2020 to November 1, 2021. The technical success rate, 1-year local control (LC) rate, recurrence-free survival (RFS) and treatment-related complications were analyzed.

View Article and Find Full Text PDF

Red clay, a widely distributed soil, weakens significantly when exposed to water. This poses challenges for using it as a foundation for urban infrastructure, as rainwater scouring, infiltration, and external loads can cause uneven settlement and landslides, compromising structural integrity. To address this issue, we propose the use of a green highly permeable water-soluble polyurethane material (PSP) as an alternative to conventional curing agents.

View Article and Find Full Text PDF

Lithium cobalt oxide (LiCoO, LCO) has been widely used in electronic markets due to its high energy density and wide voltage range applications. Recently, high-voltage (HV, >4.5 V) operation has been required to obey the requirements of high energy density and cycle life in several applications such as electric vehicles and energy storage.

View Article and Find Full Text PDF

Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical.

View Article and Find Full Text PDF

Quercetin, a typical flavonoid derived from a common natural plant, has multiple biological activities. Previous research in animal models has demonstrated the effectiveness of quercetin in treating rheumatoid arthritis (RA). The pharmacological effects and probable mechanisms of quercetin were evaluated in this study.

View Article and Find Full Text PDF

Due to their high porosity, large specific surface area, and structural similarity with the extracellular matrix (ECM), electrospun nanofiber membranes are often endowed with the antibacterial properties for biomedical applications. The purpose of this study was to synthesize nano-structured Sc2O3-MgO by doping Sc, calcining at 600 °C, and then loading it onto the PCL/PVP substrates with electrospinning technology with the aim of developing new efficient antibacterial nanofiber membranes for tissue engineering. A scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) were used to study the morphology of all formulations and analyze the types and contents of the elements, and an X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) were used for further analysis.

View Article and Find Full Text PDF

The toxicity of Mg(OH) nanoparticles (NPs) as antibacterial agents to a normal biological system is unclear, so it is necessary to evaluate their potential toxic effect for safe use. In this work, the administration of these antibacterial agents did not induce pulmonary interstitial fibrosis as no significant effect on the proliferation of HELF cells was observed in vitro. Additionally, Mg(OH) NPs caused no inhibition of the proliferation of PC-12 cells, indicating that the brain's nervous system was not affected by Mg(OH) NPs.

View Article and Find Full Text PDF

In this work, we demonstrated a novel cancer antigen 125 (CA125) biomarker detection based on electrochemical immunosensor. The biomarker on conductive composite materials of carbon ink/carbon dot/zine oxide (C-ink/CD/ZnO) was employed as an electrode platform by using ITO substrate to enhance the interaction of antibodies (Ab) with supporting catalytic performance of ZnO as a labeling signal molecule. They were a scientist attention for biosensor with chemical stability, strong biocompatibility, high conductive signal, and accuracy.

View Article and Find Full Text PDF

In this study, the uniaxial compression and cyclic loading and unloading experiments were conducted on the non-water reactive foaming polyurethane (NRFP) grouting material with a density of 0.29 g/cm, and the microstructure was characterized using scanning electron microscope (SEM) method. Based on the uniaxial compression and SEM characterization results and the elastic-brittle-plastic assumption, a compression softening bond (CSB) model describing the mechanical behavior of micro-foam walls under compression was proposed, and it was assigned to the particle units in a particle flow code (PFC) model simulating the NRFP sample.

View Article and Find Full Text PDF
Article Synopsis
  • This research focuses on improving nano-MgO's antibacterial properties through ion doping (specifically with Sc) and creating specific textures on its surface.
  • When 10% Sc is added to the nano-MgO, it results in a uniform, nano-textured surface that enhances its antibacterial effectiveness against bacterial strains E. coli and S. aureus.
  • The 10% Sc-doped nano-MgO (SM-10) shows a minimum bactericidal concentration (MBC) of 0.03 mg/mL, significantly better than the non-doped and commercial versions of nano-MgO, indicating strong potential for antibacterial applications.
View Article and Find Full Text PDF