For the evaluation of novel therapeutic agents for diabetic kidney disease (DKD), it is desirable to examine their efficacy in animal models by using the glomerular filtration rate (GFR) as an index. For this purpose, animal models that demonstrate a short-term GFR decline because of disease progression are required. Therefore, we aimed to develop such an animal model of DKD by using obese type 2 diabetic spontaneously diabetic Torii (SDT) fatty rats treated with salt loading by drinking water containing sodium chloride with or without unilateral nephrectomy.
View Article and Find Full Text PDFAims: Enteropeptidase is a serine protease localized on the duodenal brush border that catalyzes the conversion of inactive trypsinogen into active trypsin, thereby regulating protein breakdown in the gut. We evaluated the effects of SCO-792, a novel enteropeptidase inhibitor, in mice.
Materials And Methods: In vivo inhibition of enteropeptidase was evaluated via an oral protein challenge.
The pharmacological profile of a novel angiotensin II type 1 receptor blocker, azilsartan medoxomil, was compared with that of the potent angiotensin II receptor blocker olmesartan medoxomil. Azilsartan, the active metabolite of azilsartan medoxomil, inhibited the binding of [(125)I]-Sar(1)-I1e(8)-angiotensin II to angiotensin II type 1 receptors. Azilsartan medoxomil inhibited angiotensin II-induced pressor responses in rats, and its inhibitory effects lasted 24h after oral administration.
View Article and Find Full Text PDF