Glutathione conjugation is a crucial step in xenobiotic detoxification. In the current study, we have functionally characterized an epsilon-class glutathione S-transferase (GST) from a brown planthopper Nilaparvata lugens (nlGSTE). The amino acid sequence of nlGSTE revealed approximately 36-44% identity with epsilon-class GSTs of other species.
View Article and Find Full Text PDFGenetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.
View Article and Find Full Text PDFA complementary DNA that encodes an omega-class glutathione S-transferase (GST) of the brown planthopper, Nilaparvata lugens (nlGSTO), was isolated by reverse transcriptase polymerase chain reaction. A recombinant protein (nlGSTO) was obtained via overexpression in the Escherichia coli cells and purified. nlGSTO catalyzes the biotransformation of glutathione with 1-chloro-2,4-dinitrobenzene, a general substrate for GST, as well as with dehydroascorbate to synthesize ascorbate.
View Article and Find Full Text PDFThe production of alcohols directly from carbon dioxide by engineered cyanobacteria is an attractive technology for a sustainable future. Enhanced tolerance to the produced alcohols would be a desirable feature of the engineered cyanobacterial strains with higher alcohol productivity. We have recently obtained the mutant strains of Synechococcus elongatus PCC 7942 with higher tolerance to isopropanol using a single-cell screening system (Arai et al.
View Article and Find Full Text PDF