Congenit Anom (Kyoto)
January 2024
Context: We have previously reported that a specific "AGATC" haplotype in a >34 kb tight linkage disequilibrium (LD) block within ESR1 is strongly associated with cryptorchidism and hypospadias in Japanese boys.
Objective: We aimed to determine the true susceptibility factor for cryptorchidism and hypospadias linked to the "AGATC" haplotype.
Methods: We performed various molecular studies in hitherto unreported 230 Italian boys (80 with cryptorchidism and 150 with normal genitalia) and previously reported and newly recruited 415 Japanese boys (149 with cryptorchidism, 141 with hypospadias, and 125 with normal genitalia).
Recent studies have indicated that heterozygous loss-of-function variants in fibroblast growth factor receptor 1 () are involved in the development of congenital hypogonadotropic hypogonadism and combined pituitary hormone deficiency (CPHD). We encountered a Japanese boy with short stature and pubertal failure. Endocrine studies showed GH, TSH, and LH/FSH deficiencies, and brain magnetic resonance imaging delineated hypoplastic anterior pituitary and ectopic posterior pituitary.
View Article and Find Full Text PDFX-linked dominant chondrodysplasia punctata (CDPX2) is a rare congenital disorder caused by pathogenic variants in EBP on Xp11.23. We encountered a girl and her mother with CDPX2-compatible phenotypes including punctiform calcification in the neonatal period of the girl, and asymmetric limb shortening and ichthyosis following the Blaschko lines in both subjects.
View Article and Find Full Text PDFBackground: Parthenogenetic mosaicism is an extremely rare condition identified only in five subjects to date. The previous studies indicate that this condition is mediated by parthenogenetic activation and is free from a specific phenotype ascribed to unmaking of a maternally inherited recessive variant in the parthenogenetic cell lineage.
Results: We examined a 28-year-old Japanese 46,XX female with Silver-Russell syndrome and idiopathic hypersomnia.
Primary ovarian insufficiency (POI) is a highly heterogeneous condition, and its underlying causes remain to be clarified in a large fraction of patients. Congenital disorders of glycosylation (CDG) are multisystem diseases caused by mutations of a number of genes involved in N-glycosylation or O-glycosylation, and the most frequent form is PMM2-CDG (alias, CDG-Ia) resulting from biallelic mutations in PMM2 encoding phosphomannomutase-2 involved in N-glycosylation. Here, we examined a 46,XX Japanese female with syndromic POI accompanied by an undetectable level of serum anti-Müllerian hormone (AMH).
View Article and Find Full Text PDFKagami-Ogata syndrome (KOS14) is a rare imprinting disorder characterized by a unique constellation of phenotypes including bell-shaped small thorax with coat-hanger appearance of the ribs. We encountered an African American female infant with KOS14 phenotype and 46,XX,t(2;14)(q11.2;q32.
View Article and Find Full Text PDFWe report a Japanese girl with Coffin-Lowry syndrome phenotype such as hypertelorism, hypodontia, and tapering fingers and 46,XX,t(X;11)(p22;p15)dn. Whole genome sequencing revealed disruption by the translocation, and X-inactivation analysis indicated preferential inactivation of the normal X chromosome. The results explain the development of an X-linked disease in this girl.
View Article and Find Full Text PDFInterstitial microdeletions at chromosome 19p13.3 are frequently associated with a constellation of clinical features including macrocephaly, characteristic face, intellectual disability, and sleep apnea. Previous studies in 25 patients with 19p13.
View Article and Find Full Text PDFSplit-hand/foot malformation (SHFM) is a clinically and genetically heterogeneous condition. We sequentially performed screening of the previously identified Japanese founder 17p13.3 duplication/triplication involving BHLHA9, array comparative genomic hybridization, and whole exome sequencing (WES) in newly recruited 41 Japanese families with non-syndromic and syndromic SHFM.
View Article and Find Full Text PDFAlthough POR deficiency (PORD) is assumed to be accompanied by excessive placental androgen accumulation and enhanced adrenal and testicular androgen production via the backdoor pathway as well as compromised testicular androgen production via the frontdoor pathway, there is no direct evidence for the flux of excessive placental androgens into the fetal circulation and for the production of dihydrotestosterone (DHT) via the backdoor pathway. We examined longitudinal serum and urine steroid metabolite profiles in a 46,XY infant with PORD who was prenatally identified because of the progressive fetal masculinization and maternal virilization from the mid-gestation and the presence of fetal radio-humeral synostosis and was confirmed to have compound heterozygous mutations of POR (p.Q201X and p.
View Article and Find Full Text PDFSyndromic craniosynostoses usually occur as single gene disorders. In this study, we analyzed FGFR1-3 genes in four patients with Crouzon syndrome (CS), four patients with Pfeiffer syndrome type 2 (PS-2), one patient with Jackson-Weiss syndrome (JWS), and two patients (sisters) with Muenke syndrome (MS). FGFR2 and FGFR3 mutations were identified in 10 of the 11 patients.
View Article and Find Full Text PDFAlthough childhood adrenocortical carcinomas (c-ACCs) with a TP53 mutation are known to produce androgens, detailed steroidogenic characters have not been clarified. Here, we examined steroid metabolite profiles and expression patterns of steroidogenic genes in a c-ACC removed from the left adrenal position of a 2-year-old Brazilian boy with precocious puberty, using an atrophic left adrenal gland removed at the time of tumorectomy as a control. The c-ACC produced not only abundant dehydroepiandrosterone-sulfate but also a large amount of testosterone via the Δ5 pathway with Δ5-androstenediol rather than Δ4-androstenedione as the primary intermediate metabolite.
View Article and Find Full Text PDFWe report duplications of maternally derived chromosome 11p15 involving CDKN1C encoding a negative regulator for cell proliferation in three Japanese patients (cases 1 and 2 from family A and case 3 from family B) with Silver-Russell syndrome (SRS) phenotype lacking hemihypotrophy. Chromosome analysis showed 46,XX,der(16)t(11;16)(p15.3;q24.
View Article and Find Full Text PDFBackground: Limb malformations are rare disorders with high genetic heterogeneity. Although multiple genes/loci have been identified in limb malformations, underlying genetic factors still remain to be determined in most patients.
Methods: This study consisted of 51 Japanese families with split-hand/foot malformation (SHFM), SHFM with long bone deficiency (SHFLD) usually affecting the tibia, or Gollop-Wolfgang complex (GWC) characterized by SHFM and femoral bifurcation.
Background: Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS)-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients.
View Article and Find Full Text PDFObjective: Arboleda et al. have recently shown that IMAGe (intra-uterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome is caused by gain-of-function mutations of maternally expressed gene CDKN1C on chromosome 11p15.5.
View Article and Find Full Text PDFThe steroidogenic enzyme 21-hydroxylase is necessary for the synthesis of both glucocorticoids and mineralocorticoids. 21-hydroxylase is a cytochrome P-450 enzyme and is encoded by the gene CYP21A2. Here we report a 68-year-old phenotypically 'male' but genetically female patient with 21-hydroxylase deficiency (21OHD) and the concomitant virilizing adrenocortical carcinoma.
View Article and Find Full Text PDFFamilial glucocorticoid deficiency (FGD) is a rare autosomal recessive disorder characterized by primary hypocortisolism and normal mineralocorticoid production. Recently, NNT encoding the nicotinamide nucleotide transhydrogenase has been identified as a causative gene for FGD. Thus, we examined NNT in six Japanese FGD patients with no recognizable mutation in the previously known four responsible genes for FGD (MC2R, MRAP, STAR, and MCM4), and identified a novel homozygous substitution (c.
View Article and Find Full Text PDFMAMLD1 (mastermind-like domain containing 1) is a recently discovered causative gene for 46,XY disorders of sex development (DSD), with hypospadias as the salient clinical phenotype. To date, microdeletions involving MAMLD1 have been identified in six patients, and definitive mutations (nonsense and frameshift mutations that are predicted to undergo nonsense mediated mRNA decay [NMD]) have been found in six patients. In addition, specific MAMLD1 cSNP(s) and haplotype may constitute a susceptibility factor for hypospadias.
View Article and Find Full Text PDFAlthough recent studies in patients with paternal uniparental disomy 14 [upd(14)pat] and other conditions affecting the chromosome 14q32.2 imprinted region have successfully identified underlying epigenetic factors involved in the development of upd(14)pat phenotype, several matters, including regulatory mechanism(s) for RTL1 expression, imprinting status of DIO3 and placental histological characteristics, remain to be elucidated. We therefore performed molecular studies using fresh placental samples from two patients with upd(14)pat.
View Article and Find Full Text PDFPaternal uniparental disomy 14 (UPD(14)pat) results in a unique constellation of clinical features, and a similar phenotypic constellation is also caused by microdeletions involving the DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and/or the MEG3-DMR and by epimutations (hypermethylations) affecting the DMRs. However, relative frequency of such underlying genetic causes remains to be clarified, as well as that of underlying mechanisms of UPD(14)pat, that is, trisomy rescue (TR), gamete complementation (GC), monosomy rescue (MR), and post-fertilization mitotic error (PE). To examine this matter, we sequentially performed methylation analysis, microsatellite analysis, fluorescence in situ hybridization, and array-based comparative genomic hybridization in 26 patients with UPD(14)pat-like phenotype.
View Article and Find Full Text PDFContext: Aromatase excess syndrome (AEXS) is a rare autosomal dominant disorder characterized by gynecomastia. Although cryptic inversions leading to abnormal fusions between CYP19A1 encoding aromatase and its neighboring genes have been identified in a few patients, the molecular basis remains largely unknown.
Objective: The objective of the study was to examine the genetic causes and phenotypic determinants in AEXS.